中國文化大學理學院地學研究所大氣科學組

碩士論文

Master of Science Thesis Graduate School of Earth Science (Atmospheric Sciences Section) College of Science Chinese Culture University

地形降水診斷模式發展與評估

-大屯山區冬季降水個案之初探

Development and evaluation of diagnostic model of orographic precipitation– Preliminary study of the winter precipitation cases over Da-Tun Mountain

指導教授:游政谷 Advisor: Cheng-Ku Yu

研究生:李方婷 Graduate Student: Fang-Ting Lee

中華民國 102 年 6 月 June 2013

文化大

碩士學位論文

地形降水診斷模式發展與評估-大屯山區冬季降水個案之初探

研究生: 李方婷 經考試合格特此證明

口試委員: 4 22 2 隋中突即正子 指導教授: 浙江人名

口試日期:中華民國 102 年 6 月 25 日

摘要

本研究藉由在大屯山區建置之雨量密集觀測網來評估地形降水 診斷模式的模擬結果。本研究選擇了 2011 年至 2013 年總共 18 個冬 季東北季風降雨個案來做模擬。這些個案基本上沒有伴隨鋒面系統, 其降水的原因主要與地形抬舉有關。觀測研究分析顯示,大屯山有兩 種降水分佈特徵,第一類是在迎風面的山坡上有兩處降水局部極大值, 第二類是在迎風面的山谷中有一處降水局部極大值。此兩類所伴隨的 Froude number (Fr) 有明顯差異,前者 Fr 較大,後者 Fr 相對較小。 診斷模式模擬顯示,模擬之降水分佈在迎風面的山坡上有兩處局部極 大值,與第一類實際觀測降水分佈較相似,且由相關分析結果得知診 斷模式估計之降水強度(分佈)與實際降雨量有高度至中度的相似度。 模式無法模擬出位於迎風面山谷之降水局部極大值(即觀測分佈第二 類),其原因是診斷模式的物理過程主要只包含地形斜坡強迫舉升凝 結機制(Upslope forcing)所產生的降水,當實際個案中若有氣流被地形 阻塞(blocking),可能導致模式估計與實際降水分佈差異較大。這些 研究結果顯示地形降水診斷模式對於地形降水的預報有相當好的潛 能價值。

誌謝

本研究能夠完成,首先要感謝我的指導老師游政谷博士這三年來 給予我的教導以及督促,在老師的指導下,除了學到研究有關的知識 以外,更使我學會嚴謹的思考以及對研究的態度。此外老師也在生活 上予以學生各方面的協助與關心,使學生在精神層面上得到慰藉。能 夠在碩士生涯中如此成長,在此向老師致上最誠懇的感謝。

感謝台灣大學陳正平老師與隋中興老師細心的審閱,有了兩位口 試委員的寶貴意見使得本研究論文更加完整充實。研究所的求學過程 中,特別由衷的感激鄭凌文學長耐心的教導程式設計與傳授研究的經 驗,使我能夠順利的解決各種撰寫程式與研究技巧等問題。在研究資 料上面,感謝凌文學長、美伶、漢宇、文軒與孝儒不辭辛勞的幫忙我 維護雨量筒,使雨量資料更加完整。感謝嘉倫學長、哲佑學長、陳瀅 學姊、亦堅學長、佩蓉學姊與系上學長姐、助教、同學以及所有師長 們的協助,及感謝之翰、立朋、虹穎、怡葶、玫紜、品翔、政澤、毓 婷、岱蔚與家瑜等好朋友的鼓勵與陪伴讓我享受多采多姿的研究所生 活,並使我能夠將論文順利完成。

感謝我的媽媽,這些年來一個人撐起家中的經濟,讓我專心的扮 演學生的角色,並始終作我的後盾給我依靠。感謝爺爺、奶奶幫我支 付了2年外宿的房租,且給我最溫暖的鼓勵帶我走出低潮的時候。感 謝老楊北北、美惠阿姨與小琪姐姐,不僅在生活上時常支援我並教我 如何去分析與思考問題,給我腦力激盪,你們的關愛都烙印在我心裡。 感謝姨、姑姑、王馨姐姐、安安、妹妹與錢錢,謝謝你們在我枯燥的 生活中帶給我許多美好的回憶。最後感謝我的爸爸,讓我立定考研究 所的志向,並一路支持著我到畢業。再次感謝所有幫助過我的貴人們 並感謝天主,在此將這份成果獻給大家。

Ш

目錄

摘要I
誌謝Ⅱ
目錄
圖表說IV
第一章 前言1
(一) 文獻回顧1
(二) 研究動機2
第二章 資料及模式5
(一) 資料
1. 資料來源5
2. 大屯山區密集雨量觀測網概述5
3. NCEP-FNL 資料處理7
4. 數值地形資料介紹與處理7
(二) 地形降水診斷模式介紹9
第三章 東北季風個案選取方法及描述12
第四章 大屯山降水分佈特徵13
第五章 模擬結果與討論15
第六章 結論與未來展望17
參考文獻19

圖表說

- 表1 18個東北季風降雨個案,包括個案起始時間、個案累積時間、 平均雨量、降水強度、平均 Froude number(Fr)、平均風速、 平均風向、平均混合比與平均相對溼度。
- 表2 模式計算所得之均方根誤差與相關分析。
- 圖 1.1 簡單地形降水機制示意圖。(a)種雲播雲機制(Seeder-feeder mechanism);(b)地形斜坡強迫舉升凝結機制(Upslope forcing);
 (c)地形斜坡激發機制(upslope triggering);(d)地形上游減速激發機制(Upstream triggering);(e)熱力激發機制(Thermal triggering);(f)背風面輻合激發機制(Lee-side triggering);(g) 背風面重力波加強機制(Lee-side enhancement by gravity waves)(圖摘取自 Houze 1993)。
- 圖 2.1 測站分佈圖,色階為地形高度(單位:公尺,間距如圖左下 方所標示),圖中標示符號所代表的測站類型於圖右下方說 明,圖中黃色曲線區域內為本研究選取東北季風個案的雨量 站範圍。
- 圖 2.2 累積雨量分佈圖。(a) 個案1僅氣象局雨量資料之雨量分佈圖; (b) 個案1加入大屯山區密集雨量觀測網雨量分佈圖;(c) 個 案2僅氣象局雨量資料之雨量分佈圖;(d) 個案2加入大屯山 區密集雨量觀測網雨量分佈圖 (Cressman (1959)的權重函數 將其轉為網格資料繪製而成,色階為實際雨量,單位:mm, 間距為圖上方所標示;網線為地形高度,單位:m,間距如 圖右側所標示),圖中星號為本系傾斗式雨量筒、實心正方形 為氣象局局屬站、空心圓形為氣象局自動氣象站,實心圓形

為氣象局自動雨量站。

- 圖 2.3 NCEP-FNL 再分析資料的網格資料分佈,本研究使用大屯山 上游的單點網格點資料(紅色空心圓),網格點經緯度為 122° E, 26°N。
- 圖 2.4 氣壓與垂直速度的遞減率的變化 (圖摘取自 Sinclair 1994)。
- 圖 2.5 平流過程示意圖。 (a) 氣流受地形舉升凝結後,直接落至地 表;(b) 氣流受地形舉升凝結後,雨滴受水平風場的平移,進 而落至地表。(圖摘取自鄭凌文 2008)。
- 圖 2.6 t_f(p)方程式(2.7)考慮水氣凝結成水滴所需的時間

(Formation time) (圖摘取自 Sinclair 1994)。

- 圖 3.1 本研究 18 個東北季風個案的 NCEP-FNL 的平均斜溫圖,藉 此描述地形上游的平均大氣環境條件,右側風標為水平風隨 高度變化 (half-bar = 2.5 m s⁻¹, full bar = 5 m s⁻¹)。
- 圖 4.1 東北季風 18 個個案的平均雨量分佈圖。(Cressman (1959)的權 重函數將其轉為網格資料繪製而成,色階為實際雨量,單位: mm,間距為圖上方所標示;網線為地形高度,單位:m,間 距如圖右側所標示),圖中星號為本系傾斗式雨量筒、實心正 方形為氣象局局屬站、空心圓形為氣象局自動氣象站,實心 圓形為氣象局自動雨量站。
- 圖 4.2 個案實際累積雨量分佈圖。(a) 個案 1;(b) 個案 2;(c) 個案 3;(d) 個案 4;(e) 個案 5;(f) 個案 6;(g) 個案 7;(h) 個案 8;(i) 個案 9;(j) 個案 10;(k) 個案 11;(l) 個案 12;(m) 個 案 13;(n) 個案 14;(o) 個案 15;(p) 個案 16;(q) 個案 17; (r) 個案 18 (Cressman (1959)的權重函數將其轉為網格資料繪

製而成,色階為實際雨量,單位:mm,間距為圖上方所標示; 網線為地形高度,單位:m,間距如圖右側所標示),圖中星 號為本系傾斗式雨量筒、實心正方形為氣象局局屬站、空心 圓形為氣象局自動氣象站,實心圓形為氣象局自動雨量站。

- 圖 5.1 均方根誤差隨γ與r_s的分佈,各個案的 RMES、γ、r_s如表 2 所示。(a) 個案 1; RMSE=0.89 (b) 個案 2; RMSE=0.45 (c) 個 案 3; RMSE=0.8 (d) 個案 4; RMSE=0.7 (e) 個案 5; RMSE=0.85 (f) 個案 6; RMSE=0.67 (g) 個案 7; RMSE=0.54 (h) 個案 8; RMSE=0.68 (i) 個案 9; RMSE=0.73 (j) 個案 10; RMSE=0.69 (k) 個案 11; RMSE=0.87 (l) 個案 12; RMSE=0.51 (m) 個案 13; RMSE=0.79 (n) 個案 14; RMSE=0.96 (o) 個案 15; RMSE=0.66 (p) 個案 16; RMSE=0.81 (q) 個案 17; RMSE=0.91 (r) 個案 18; RMSE=0.94 (色階為 RMSE, 間距 如圖上所標示)。
- 圖 5.2 個案模擬雨量分佈圖。(a) 個案 1; $\gamma = 1.8 \cdot r_s = 0.83$ (b) 個 案 2; $\gamma = 0 \cdot r_s = 0.73$ (c) 個案 3; $\gamma = 1.5 \cdot r_s = 0.83$ (d) 個 案 4; $\gamma = 1.7 \cdot r_s = 0.83$ (e) 個案 5; $\gamma = 1.8 \cdot r_s = 0.83$ (f) 個案 6; $\gamma = 0 \cdot r_s = 0.825$ (g) 個案 7; $\gamma = 0.1 \cdot r_s = 0.785$ (h) 個案 8; $\gamma = 1.3 \cdot r_s = 0.815$ (i) 個案 9; $\gamma = 1.4 \cdot r_s =$ 0.81 (j) 個案 10; $\gamma = 1.3 \cdot r_s = 0.805$ (k) 個案 11; $\gamma = 1.8 \cdot r_s = 0.83$ (l) 個案 12; $\gamma = 1.1 \cdot r_s = 0.775$ (m) 個 案 13; $\gamma = 1.5 \cdot r_s = 0.8$ (n) 個案 14; $\gamma = 1.9 \cdot r_s = 0.83$ (o) 個案 15; $\gamma = 1.8 \cdot r_s = 0.83$ (p) 個案 16; $\gamma = 1.8 \cdot r_s = 0.83$ (q) 個案 17; $\gamma = 1.8 \cdot r_s = 0.83$ (r) 個案 18; $\gamma = 1 \cdot r_s = 0.83$ ·

圖 5.3 觀測雨量站與模擬雨量之相關分析。 (a)個案 1;相關係數 =0.62 (b)個案 2;相關係數=0.88 (c)個案 3;相關係數=0.8 (d) 個案 4;相關係數=0.8 (e)個案 5;相關係數= 0.64 (f)個案 6; 相關係數=0.77(g)個案 7;相關係數=0.86 (h)個案 8;相關係數 =0.74 (i)個案 9;相關係數=0.74 (j)個案 10;相關係數=0.82 (k) 個案 11;相關係數= 0.63 (l)個案 12;相關係數=0.84(m)個案 13;相關係數=0.6 (n)個案 14;相關係數=0.4(o)個案 15;相關 係數=0.49 (p)個案 16;相關係數=0.36 (q)個案 17;相關係數= 0.37 (r)個案 18;相關係數=0.19。

第一章 前言

台灣位於東亞地區全球最大歐亞大陸與最大海洋太平洋之交界, 為全球季風最顯著的地區之一,每當東北季風盛行時期,即形成東北 部迎風面的雨季,大多數為降雨時間持續較長且雨勢不大的層狀降水, 但值得注意的是氣流在地形效應的影響下,會產生山區加強的現象, 造成山區嚴重的災害。故若能夠發展適合台灣北部針對東北季風的地 形降水模式,便能有效模擬山區強降水位置,有助防範災害減少民生 損失。

(一)文獻回顧

Houze(1993)將地形降水機制(如圖1.1所示)簡略分為(a)種雲播雲 機制(Seeder-feeder mechanism); (b)地形斜坡強迫舉升凝結機制 (Upslope forcing); (c)地形斜坡激發機制(Upslope triggering); (d)地形 上游減速激發機制(Upstream triggering); (e)熱力激發機制(Thermal triggering); (f)背風面輻合激發機制(Lee-side triggering); (g)背風面重 力波加強機制 (Lee-side enhancement by gravity waves)。但是在實際 的情況下地貌是很複雜的,降雨強度和雨量分佈經常受到地形的影響, 如颱風、梅雨和東北季風等系統所伴隨的降雨,皆會因地形效應產生 山區降雨加強的現象(鄭 2006)。因此地形降水是個非常具有挑戰性 的一個科學議題。

其他國家在很早以前就開始研究地形降水的議題,Smith (1979) 提出了三個地形引發降水的機制:第一個是當上游氣流通過尺度較大 的山時,受到地形抬升達到飽和在迎風面產生降雨並且在背風側出現 雨蔭區。第二種是透過地形舉升而雲滴事先出現在小山丘上,若大環 境有降水,雨滴就會和雲滴合併使得降雨增強,這種機制也稱為種雲 播雲機制。第三種則是當太陽照射到山脈時,熱力的作用也會使得山 區有積雨雲的出現。因此,不論是在動力上或者是在熱力上的強迫 (forcing)都有可能會產生地形降水。

過去研究指出天氣系統伴隨的降雨量多寡大多受到當地地形影 響(Whitehouse 1985),早期一些研究顯示在較高的地形解析度的區域 內,可以使用簡單的地形降水模式模擬降水(Barros and Lettenmaier 1993),且從氣流過山時產生的二維流線直接影響垂直速度和降水分 佈(e.g., Sarker 1966; Fraser et al. 1973; Colton 1976; Gocho 1978),而地 形降水模式可以從大尺度的數值模式(e.g., Bell 1978)或地面觀測與探 空資料初始化(Barros and Lettenmaier 1993)。Alpert and Shafir (1989) 提出在中小尺度地形上由地形引發的垂直速度(v·∇z_s)在地形降水診 斷模式中扮演相當重要的角色。Sinclair (1994)研究的地形降水診斷 模式可以利用大尺度的資料作為診斷模式的輸入資料,與用重力波效 應計算垂直速度分佈,藉以研究重力波對山區降水的影響(Chris and Joel 2004),綜合以上文獻討論可以了解,地形降水診斷模式可以利 用地形引發的垂直速度與大尺度的分析資料,模擬中小尺度的地形降 水。

(二)研究動機與目的

台灣的地形複雜,降雨強度和雨量分布經常受到地形的影響,如 颱風、梅雨和東北季風等系統所伴隨的降雨,皆會因地形效應產生山 區降雨加強的現象。雖然我們可預期山區的降雨會受到地形效應的影響,但在山區還是缺少完善的預報能力,主要的原因是對現行所使用 數值預報模式中的物理參數有太多不確定性,且山區的雨量站分佈較 為稀疏,時常無法代表實際山區的降水,在兩項皆有不確定性的組合 中,導致無法正確的驗證模擬和觀測的降雨分佈,所以想要改善地形 降水模式的預報能力,首先要克服在山區雨量觀測上的誤差。

由於現今數值模式對地形降水的模擬能力不足,所以希望藉由山 區最接近真實的降水分佈來評估地形降水診斷模式的可行性與應用 價值。本研究主要參照Sinclair(1994)地形降水診斷模式之概念,模擬 地形斜坡強迫舉升凝結機制(Upslope forcing)在山區的降水分佈,特別 的是,文化大學大氣系在大屯山區建立了密集雨量觀測網,克服了山 區觀測資料的空間解析度較為不足的問題,提供近地面最接近真實的 降水資訊。而此資訊可用以準確評估地形降水診斷模式之模擬結果, 進而提供未來改善診斷模式之重要資料。

由於台灣冬季北部大屯山區受到盛行東北季風影響常有顯著降 雨發生,故本研究初步利用地形降水診斷模式估計東北季風氣流因大 屯山地形抬舉所凝結的降水之強度與分佈,我們選取2011年至2013 年共18個東北冬季降水個案,並藉由本系在大屯山區建置之雨量密集 觀測網與氣象局地面氣象站之雨量資料,評估地形降水診斷模式的模 擬結果。期望利用此相對較單純的綜觀環境和山區密集雨量觀測資料, 評估和改善此地形降水診斷模式。除此之外,我們也希望可以藉由近 三年的個案探討在相同綜觀環境下地形對於降雨強度與分佈的情況, 拓展我們對於東北季風與地形交互作用的認知。

本文第二章說明本研究所使用的資料來源與地形降水診斷模式 概述。第三章對於東北季風選取個案作概括性的描述。第四章介紹大 屯山降水分佈的特徵。第五章利用於大屯山區所建置之雨量密集觀測 網雨量資料與地形降水診斷模式之估計降水做比較和討論。最後將研

3

究的主要成果與未來展望整理於第六章。

第二章 資料及模式

(一) 資料與處理方法

1.資料來源

- (1)大屯山區密集雨量觀測網:中國文化大學大氣科學系於大屯山區域,建置之高解析度(空間及時間)自動雨量站,雨量筒的型號為 CTKF-1,雨量資料為每分鐘一筆,但因配合氣象局之逐時雨量資料的時間解析度,故累積為逐時資料。
- (2) 中央氣象局:氣象局局屬測站、自動氣象站、自動雨量站之地面 測站逐時雨量資料。
- (3) NCEP-FNL再分析資料:美國國家環境預報中心以EMC模式模擬 之全球分析場資料NCEP-FNL,為每六小時一筆的分析場網格資料,水平網格間距為1°x 1°。
- (4) 數值地形資料:台灣地區數值地形模型資料(DTM, Digital Terrain Model)為行政院農委會補助計畫「台灣地區數值地形模型資料」, 由林務局農林航空測量所執行,製作完成之台灣地區數值模型資料(DTM),轉存中央大學太空及遙測研究中心並負責保管。

2.大屯山區密集雨量觀測網概述

由於中央氣象局在山區的雨量站分佈非常稀疏,時常無法代表實際山區的降水,可能誤導研究的結果。雖然利用雷達回波可反演降水, 但是雷達回波會受到山區地形複雜而影響其波束消弱或被遮蔽,且波 束與地形之間也存在相當的高度,無法完全代表近地面真實的雨量。 故本系於 2009 年至 2011 年在大屯山區域陸續建置共 22 個自動雨量 站,希望能夠較準確描述大屯山區的降水分佈與強度。各站名稱依建 置時間排序為大屯國小、磺嘴山、界碑、鹿角坑、三芝鄉、小油坑、 興華國小、平等國小、竹篙山、竹子山、瑪陵國小、溪底、野柳國小、 中泰國小、金山、嵩山、夢湖、隆盛國小、長興國小、北港國小、碇 內國小(本研究未使用此站資料)和蓬萊陵園(上述測站之地理位置請 參考圖 2.1)。在本研究中我們結合這些新設置之雨量站及與氣象局現 有的氣象雨量觀測站,藉此得到山區內時間與空間的高解析度之降雨 資訊,提升對地形降水發展、分佈、演化及其降水強度的掌握程度。

為了評估加入觀測資料,對於降水分佈特徵是否有顯著的影響, 故做以下的分析,圖2.2 為本研究個案1和個案2氣象局的雨量資料 與加入山區密集雨量觀測網的降水分佈。個案 1(圖 2.2a、2.2b)使用氣 象局雨量資料所繪製的降水分佈(圖 2.2a)顯示強降水區僅有一處且廣 泛的分佈在大屯山迎風斜坡上,最大降水為 21~24 mm hr⁻¹。但加入 本系高密度雨量筒觀測網資料(圖 2.2b)後發現有兩處強降水集中區, 在大屯山迎風面的兩個山頂且延伸至斜坡上,且最大降水為 36~39 $mm hr^{-1}$, 與氣象局的觀測結果相差其大。個案 2 (圖 2.2c、2.2d)僅使 用氣象局資料的降水分佈(圖 2.2c)顯示強降水區僅有兩處分別為大屯 山脈北端第一個山脈中間,另一處在大屯山迎風斜坡上並向東南方延 伸,最大降水為 88~96 mm hr⁻¹。而加入本系高密度雨量筒觀測網資 料(圖 2.2d)後也發現有兩處強降水集中區,但其位置氣象局的雨量分 佈較不相同。其一在大屯山脈北端第一個山脈前半段且向西北方延伸, 另一處在迎風面靠近南方的山頂且延伸至迎風面斜坡上,最大降水為 96~104 mm hr⁻¹。以上分析顯示,由於空間解析度的不足,中央氣象 局在大屯山山區建置的觀測站無法捕捉到實際的降水分佈與強度,也 反映了大屯山山區密集雨量觀測網的重要性與研究資料上的價值。

6

3.NCEP-FNL 資料處理

本研究使用美國國家環境預報中心以 EMC 模式模擬之全球分析 場資料 NCEP-FNL 為每六小時一筆的分析場網格資料,水平網格間 距為 1°x 1°。垂直方向從 100 百帕以下有 21 層,分別為 1000、975、 950、925、900、850、800、750、700、650、600、550、500、450、 400、350、300、250、200、150 和 100 百帕。並以 NCEP-FNL 再分 析資料中位於地形上游的單點網格資料(如圖 2.3,網格點經緯度為 122°E,26°N),將其內插成逐時資料作為此模式的輸入與綜觀環 境背景資料(包含高度、溫度、相對溼度、U、V 風場向量等)。

4. 數值地形資料介紹與處理

台灣地區數值地形模型資料(DTM, Digital Terrain Model)為行政 院農委會補助計畫「台灣地區數值地形模型資料」,由林務局農林航 空測量所執行,製作完成之台灣地區數值地形模型資料(DTM),轉存 中央大學太空及遙測研究中心並負責保管。此DTM之水平解析度為 40 m×40 m,垂直解析度為公分。平面座標系統採用二度分帶橫麥卡 脫投影(Two Degree Zone Transverse Mercator Projection 簡稱二度 TM 座標),原始資料以ASCII碼逐點儲存三維座標。

由於地形資料為ASCII碼儲存,資料儲存空間過於龐大,而為了 節省資料儲存空間及增加資料讀取速度,所以將原始資料轉為 BINARY格式。此外,由於本研究需利用地形資料作計算,而為了節 省電腦效能及減少電腦計算時間,特別另外輸出一組水平解析度為1 km×1 km的地形資料(垂直解析度仍為公尺)。

本研究為配合此地形資料之座標系統,透過中央研究院計算中心 GIS小組所開發的座標轉換計算程式,將所有經緯度資料(即海岸線資

7

料與測站位置)統一轉換為TWD67(Taiwan Datum 1967)大地基準之 TM二度分帶座標(即以虎子山為三角測量基準)。下列為TWD67的相 關介紹:

(i)參考橢球體採用 1967 年新國際地球原子如下:

長半徑: a =6378160公尺,短半徑: b =6356774.7192公尺,偏率: f =(a-b)/a=1/298.25。

(ii)大地基準點以南投埔里之虎子山起算:

經度λ為120°58′25.975″,緯度φ為23°58′32.340″,對頭拒山之方 位角α=323°57′23.135″。

(iii)高程(即高度)基準面:

台灣本島以基隆平均海水面起算,澎湖以馬公平均海水面起算。

(iv)地圖投影:

有關地籍測量及大比例尺測圖所應用之座標系統,係採用橫麥卡托投 影經差二度分帶,台灣本島之中央子午線為121°,座標原點為中央子 午線與與赤道交點,且橫座標西移250,000公尺,中央子午線之尺度 比率為0.9999。

(二) 地形降水診斷模式介紹

本研究所使用的地形降水診斷模式乃參照 Sinclair(1994)的模式設計及概念,輸入全球分析場 NCEP-FNL 的再分析資料至此降水診斷模式。理論上,本模式可以使用任何解析度的地形資料,因研究模擬範圍主要為小尺度的大屯山區域,所以在此使用的水平網格解析度為 1 km x 1 km。

由於模式為模擬氣流被地形強迫舉升所產生的降雨,故方程式 (2.1)為計算垂直速度ω_s(即^{dp}/_{dt})的方程式:

$$\omega_s \approx -\rho_s g V_s \cdot \nabla z_s \tag{2.1}$$

其中ρ_s為地表的空氣密度,g為重力加速度,V_s為 NCEP-FNL 第一層 1000hpa 和第二層 850hpa 風速的平均值,代表近地表的平均風速,而 Z_s為 DTM 地形高度。雖然方程式(2.1)忽略了重要的三維效應,如地 形周圍空氣的流動和氣流受附近更高山區的影響,可能對實際垂直速 度造成誤差。但 Smith(1979)研究指出方程式(2.1)可合理近似地形梯 度引發的垂直速度,因為大多數的水氣輻合是由於低層氣流受地表影 響而產生。

接下來我們假設地形降水是由地形引發垂直速度所強迫凝結出來,假設空氣塊受地形引發的垂直速度抬舉至舉升凝結高度(LCL)後, 沿濕絕熱線繼續上升,而空氣塊凝結率可由以下方程式來估計 (Haltiner and Williams 1980)

$$\frac{\mathrm{d}q_s}{\mathrm{dt}} = -\lambda(p)\delta\frac{q_sT}{p}\left(\frac{LR-c_pR_vT}{c_pR_vT^2+q_sL^2}\right)\omega(p) \equiv -\lambda(p)\delta F\omega(p) \tag{2.2}$$

其中 q_s 為飽和混合比,T表示地表溫度,L為凝結潛熱(=2.5×10⁶ J kg⁻¹),R是乾空氣氣體常數(=287 J K⁻¹kg⁻¹),R_v是水氣常數 (=461.5 J K⁻¹kg⁻¹), c_p 表示乾空氣比熱(=1004 J K⁻¹kg⁻¹),F為降水因子,可由方程式(2.2)推得,而方程式(2.2)的 δ 和 λ (p)參數條件如下:

$$\delta = \begin{cases} 1, \omega(p) < 0\\ 0, otherwise \end{cases}$$

and

$$\lambda(p) = \begin{cases} \left[\frac{r(p) - 0.6}{0.4}\right]^{1/2}, r(p) > 0.6\\ 0, & otherwise \end{cases}$$
(2.3)

其中r(p)是 NCEP-FNL 資料在不同氣壓層p的相對溼度,並由經驗方 程(2.3)可知,高空的降雨量取決於氣壓層p相對濕度的變化。而 Sawyer(1955)研究指出只有在濕度較高的低層可凝結出降水,故濕度 因子λ(p)的重要性是減少或避免不飽和條件下的降水。

利用方程式(2.2)積分出地面的總降雨量可表示成:

$$R = \frac{\lambda_s}{g} \int_0^{pLCL} \delta F \lambda(p) \omega(p) dp \qquad (2.4)$$

其中

$$\lambda_{s} = \begin{cases} \left(\frac{r_{s} - 0.8}{0.2}\right)^{1/4}, r_{s} > 0.8\\ 0, \ otherwise \end{cases}$$
(2.5)

R即為降水量,λ_s為濕度因子其受低層相對濕度r_s的影響,因為地形 上降水的加強是靠低層的水氣不斷的補充形成的。例如Hill et al.(1981) 發現在1~2公里的相對濕度和低層的風速是影響山區降水加強重要的 因素,所以方程式(2.5)的r_s是由NCEP-FNL第一層1000hpa資料計算得 之。Bader and Roach (1977)與Robichaud and Austin (1988)研究各種地 形降水模式的結果顯示,相對濕度80%為適合低層凝結降水的門檻, 指數 $\frac{1}{4}$ 代表相對濕度的重要性程度。

在自然界中地形引發的垂直速度受到許多動力與熱力作用影響, 因此垂直速度在空間的分佈可能極為複雜。基本上我們可將垂直速度 分成兩部分,第一部分為大尺度環境的垂直速度ω₁(p),本研究未考 慮此效應;第二部分是垂直速度,並假設它隨高度的遞減率為:

$$\omega(p) = \omega_1(p) + \omega_s \left(\frac{p - p_t}{p_s - p_t}\right)^{tan(\gamma \pi/4)}$$
(2.6)

γ影響ω。遞減的參數其範圍在 0~2 之間,氣壓與垂直速度隨高度遞減 率的變化如圖 2.4 表示,若γ = 1則遞減率為線性關係,若γ接近 0 則ω 隨高度快速遞增至氣壓層項p_t,若γ接近 2 則ω 隨高度快速遞減。

最後此診斷模式經由方程式(2.4)估計地形上游氣流受地形舉升 凝結所形成的降水量後,可進而設定三種物理機制:(1)氣流受地形 舉升凝結後,直接落至地表的降雨分佈(如圖2.5a)。(2)氣流受地形舉 升凝結後,雨滴受水平風場的平移,進而落至地表的降雨分佈(如圖 2.5b)。(3)氣流受地形舉升後,考慮水氣凝結成水滴所需的時間 [Formation time, t_f(p)],再經過風場平移落至地表的降雨分佈,

$$t_f(p) = 1000 \left[0.5 + \frac{1}{\pi} tan^{-1} \left(\frac{p_m - p}{50} \right) \right]$$
(2.7)

此方程式設定 Formation time 的最大值為 1000 秒(約 17 分鐘), p_m 為 溶解層,其定義為結冰層往下 50hpa 的氣壓。由圖 2.6 可知,Formation time 隨高度是遞增的。

第三章 東北季風個案選取方法及描述

由於本研究所探討的是由地形斜坡強迫舉升凝結機制(Upslope forcing)所形成的降水,若以相對較單純的綜觀環境條件模擬較為恰當,故以冬季降水為主要的模擬對象。

大屯山密集雨量觀測網在 2011 年 1 月初步建置完成,故本研究 囊括了最近三年的冬季降水個案,選取月份為 2011 年 1 月、2 月、 12 月、2012 年 1 月、2 月、12 月、2013 年 1 月與 2 月共 8 個月。個 案選取方式是在大屯山區域(圖 2.1 之黃色區域內)內 35 個雨量站中, 若有一半以上的雨量站的逐時雨量大於或等於 1 mm,即代表降水事 件個案開始,條件不滿足則降水事件個案結束,且降水個案時間必須 大於或等於 6 小時。經過以上條件挑選後再參考地面天氣圖及五分山 雷達回波,剔除鋒面或其他系統影響之個案,最後選定 18 個單純東 北季風降雨個案,如表 1 所示。

由於大屯山的地形高度約在一公里以下,故使用NCEP-FNL再分 析資料一公里以下的平均資料來代表個案低層環境特徵,由表1顯示, 地形上游的相對溼度皆在80%以上,Froude number (Fr=U/NH,U; 地形上游風速,N為乾靜力穩定度,H為地形高度)在1.44至4.98之間, 表示降雨過程很可能皆為地形斜坡強迫舉升凝結機制,符合本模式模 擬的條件。而平均風速為13.5m s⁻¹到18.34 m s⁻¹之間,平均風向大致為 為東北風(風向為17.37°至50.41°之間),平均混合比介於0.0049至 0.0101之間。圖3.1為本研究18個東北季風個案的NCEP-FNL的平均斜 溫圖,藉此描述地形上游的平均大氣環境條件。斜溫圖顯示低層大氣 (700 mb以下)相當潮濕,而高層為較乾的西風,對流可用位能相當 小,只有3.8 m²s⁻²,整體而言,除了1公里以下,大氣是相當穩定的。

12

第四章 大屯山降水分佈特徵

大屯山的地貌沒有固定的地形走向,外貌近似三維,高度約1公 里以下(圖2.1),迎風面的區域與上游風的風向相關。由第二章初步解 了大屯山區密集雨量觀測網各觀測站的分佈位置與其建置的重要性 之後,本章將進一步的介紹實際觀測的降水分佈特徵。

首先初步了解18個個案平均的結果,圖4.1為18個個案的平均降雨 分佈特徵,由圖顯示降雨分佈在迎風面的山坡上有兩處局部極大值, 背風面較為乾燥。而各東北季風個案之降水分佈如圖4.2所示。大略 可依降水分佈特徵分成兩類。第一類是在迎風面的山坡上有兩個強降 水區域,主要分佈集中在嵩山與磺嘴山(位置請參考圖2.1)並延伸至迎 風坡,或集中在迎風面的山坡至山谷中。如個案1、2、3、4、5、6、 7、10、11、12、17與18代表,共有12個;第二類是在迎風面的山谷 中有一處極大值,如個案8、9、13、14、15與16代表,共有6個。

由於Froude number經常為判斷氣流越山或繞山的指標之一,且可 能進而影響降水分佈,故本研究計算此兩類降水分佈的Froude number。 研究顯示第一類個案的地形上游平均Froude number為2.8,而第二類 的地形上游平均Froude number則相對較小,其值為2。由Froude number顯示第一類個案可能為地形斜坡強迫舉升凝結機制(Upslope forcing)所主導,故降水極大值大多分佈在迎風面的兩個山坡,少部 分在靠近迎風面的兩個山頂上。第二類個案為氣流在地形前可能有阻 塞效應(blocking effect),使氣流繞山,進而導致氣流在迎風面的山谷 處輻合並造成降水,故導致迎風面的山谷有降水極大值發生。這些觀 測結果顯示在單純東北季風環境下大屯山會形成兩種不同的降水分 佈特徵,其地形上游Froude number似乎是一個重要的參數來決定降水

13

分佈。

第五章 模擬結果

本章進一步利用地形降水診斷模式來模擬18個個案的降水分佈。 如第二章所述,地形降水診斷模式基本上有兩個可調整的參數分別為 γ和r_s,γ為影響垂直速度遞減率的參數,r_s為環境相對濕度的門檻值, 若γ越大垂直速度的遞減率也越大,模擬的降水量會減少,若γ越小垂 直速度的遞減率也越小,模擬的降水量會增加,若r_s越高則模擬的降 水量會越少,r_s越小則模擬的降水量會越大,為了將其調整為該個案 最適合的數值,故本研究計算了實際觀測雨量分佈與模擬雨量分佈的 均方根誤差(root-mean-square error, rmse) (Bertrand 1999):

rmse =
$$\sqrt{\left[\frac{1}{n}\sum_{i=1}^{n} (q_i^{obs} - q_i^*)^2\right]} / (\frac{1}{n}\sum_{i=1}^{n} q_i^{obs})$$
 (5.1)

q_i^{obs}為觀測的實際雨量,q_i^{*}代表診斷模式估計雨量。並且透過輸入不 同的γ(自0到2,間距為0.1)與r_s(自0.73到0.83,間距為0.005)可得 到不同的模擬結果(每個個案有441種模擬結果),再由方程式(5.1)求 得均方根誤差,即可得到均方根誤差隨γ與r_s變化的分佈情況(如圖5.1 所示),進而得到均方根誤差最小之γ和r_s數值(表2)。降水個案的γ範 圍大多介於1.5~1.8之間,r_s大多為0.83。後續將使用這些最佳化的γ及 r_s來進行模擬與討論。

模擬顯示此 18 個案(圖 5.2)大多皆在迎風面的山坡上有兩處降水 極大值,例如個案 1、2、3、4、5、6、7、10、11、12、13 與 17, 其中個案 8、11、15 與 16 實際降雨分佈雖然與模擬之降水分佈極大 值位置差異較大,但由各個案的平均 Froude number 顯示個案 8、11、 15、16 與 18 的 Fr 為全體個案中較小的(Fr 分別為 1.91、1.83、1.61、 1.44、1.8),顯示氣流在地形前可能有阻塞效應(blocking effect),其降 水形成機制與本模式地形斜坡強迫舉升凝結機制(Upslope forcing)的 物理過程不同,故導致模擬與真實降水分佈位置的不同。

接著再以透過相關係數分析量化評估實際觀測降雨量與診斷模 式模擬之降雨量的相似度,結果如圖5.3所示。研究顯示大部分個案 相關係數介於0.6至0.8之間,最高為個案2,其相關係數可達0.88,總 共有9個個案呈高度相關(即相關係數介於0.7至1),8個個案呈中度相 關(即相關係數介於0.3至0.7),僅有1個個案為低度相關(即相關係數介 於0至0.3)。這些分析結果顯示地形降水診斷模式對於大屯山區地形 降水有相當不錯的掌握程度。

第六章 結論與未來展望

本研究使用大屯山區密集雨量觀測網雨量資料,並配合地形上游 NCEP-FNL 資料輸入地降水診斷模式,初步評估模擬與觀測之地形降 水分佈及強度,並嘗試了解冬季東北季風環境下,北台灣大屯山區地 形降水的主要分佈特徵。整合前幾章的結果,其主要結論如下:

(1)東北季風 18 個個案的降水觀測分析顯示,大屯山有兩種降水 分佈特徵,第一類是在迎風面的山坡上有兩處降水局部極大值,第二 類是在迎風面的山谷中有一處降水局部極大值。此兩類所伴隨的 Froude number (Fr) 有明顯差異,前者 Fr 較大,後者 Fr 相對較小。

(2)診斷模式模擬東北季風18個個案顯示,模擬之降水分佈在迎 風面的山坡上有兩處局部極大值,與第一類實際觀測降水分佈較相 似,且由相關分析結果得知診斷模式估計之降水強度(分佈)與實際降 雨量有高度至中度的相似度。模式無法模擬出位於迎風面山谷之降 水局部極大值(即觀測分佈第二類),其原因是診斷模式的物理過程主 要只包含地形斜坡強迫舉升凝結機制(Upslope forcing)所產生的降水, 當實際個案中若有氣流被地形阻塞(blocking),可能導致模式估計與 實際降水分佈差異較大。

(3)研究顯示我們將地形降水診斷模式中可調整的參數γ和r_s,透 過均方根誤差所求得最佳γ為1.1至1.9之間,其平均為1.62,與r_s為0.73 至0.83之間,其平均為0.813,此數值可作為季大屯山區地形降水模 擬或預報的參考。

本研究主要針對近三年北台灣大屯山地區的地形與東北季風環 流之間的交互作用所產生的地形降水進行模擬及分析。由此研究使我 們對於東北季風環境下的地形斜坡強迫舉升凝結機制所產生之降水 分佈特徵有初步的了解,亦對地形上游資訊如何影響地形降水分佈及 強度有進一步的認知。然而模式中更可加入背風坡乾燥效應(lee side drying),並再深究山區的降水發展、分佈和演化過程。另外,未來亦可用重力波效應計算垂直速度分佈,藉以研究重力波對山區降水的影響,可針對本研究個案或是其他個案進行更深入的研究,以期望對東北季風環境下的地形降水能有更進一步的了解,進而改善降雨估計與預報之準確度。

参考文獻

- 鄭凌文,2006:北台灣地形對颱風降水分佈及強度之影響:象神颱風 雷達觀測研究。中國文化大學碩士論文,73頁。
- 鄭凌文,2008:地形降水診斷模式之初步分析與評估。第八屆全國大 氣科學研究生學術研討會論文,11-14。
- Alpert, H. Shafir, 1989: Mesoy-scale distribution of orographic precipitation: Numerical study and comparison with precipitation derived from radar measurements. J. Appl. Meteor, 28, 1105-1 117.
- Barros, A. P., and D. P. Lettenmaier, 1993: Dynamic modeling of the spatial distribution of precipitation in remote mountainous areas. *Mon. Wea. Rev.*, **121**, 1195-1214.
- Bader, M. J., and W. T. Roach, 1977: Orographic rainfall in warm sectors of depressions. *Quart. J. Roy. Meteor. Soc.*, **103**, 269-280.
- Banta, R. M., and Coauthors, 1990: Atmospheric Processes over Complex Terrain, *Meteor. Monogr.*, **45**, Amer. Meteor. Soc., 323 pp.
- Bell, R. S., 1978: The forecasting of orographically enhanced rainfall accumulations using 10-level model data. *Meteor. Mag.*, 107,113-124.
- Bertrand ,V. and U. Geramnn 1999 : Three Methods to Determine Profiles of Reflectivity from Volumetric Radar Data to Correct Precipitation Estimates, *J. Appl. Meteor.*, **33**, 1163–1175.
- Chirs, F. and Joel M., 2004 : A Simplified Diagnostic Model of Orographic Rainfall for Enhancing Satellite-Based Rainfall Estimates in Data-Poor Regions. J. Atmos. 39, 1715-1736.
- Colton, D. E., 1976: Numerical simulation of the orographically induced precipitation distribution for use in hydrologic analysis. J. Appl. Meteor., 15, 1241-1251.

- Cressman, G. P., 1959 : An operational objective analysis system. *Mon. Wea. Rev.*, **87**, 367-374.
- Fraser, A. B., R. C. Easter, and P. V. Hobbs, 1973: A theoretical study of the flow of air and fallout of solid precipitation over mountainous terrain: Part I. Airflow model. J. Atmos. Sci., 30, 801-812.
- Gocho, Y., 1978: Numerical experiments of orographic heavy rainfall due to a stratiform cloud. J. *Meteor. Soc. Japan*, **56**,405-422.
- Haltiner, G. J., and R. T. Williams, 1980: *Numerical Prediction and Dynamic Meteorology*. John Wiley and Sons, 477 pp.
- Hill, K. A. Browning, and M. J. Bader, 1981: Radar and raingauge observations of orographic rain over south Wales. *Quart. J. Roy. Meteor. SOC.*, 107,643-670.
- Houze, R. A., Jr., 1993: Cloud Dynamics, Academic Press, 573 pp.
- Sarker, R. P., 1966: A dynamical model of orographic precipitation. *Mon. Wea. Rev.*, **94**, 555-572.
- Sawyer, J. S., 1955: The physical and dynamical problems of orographic rain. *Weather*, **11**, 375-381.
- Sinclair, M. R., 1994: A diagnostic model for estimating orographic precipitation. *J. Appl. Meteor.*, **33**, 1163–1175.
- Smith, R. B., 1979: The influence of mountains on the atmosphere, *Adv. Geophys.*, **21**, 87-230.
- Robichaud, A. J., and G. L. Austin, 1988: On the modelling ofwarm orographic rain by the seeder-feeder mechanism. *Quart. J. Roy. Meteor. SOC.*, **114**, 967-988.
- Whitehouse, I. E., 1985: Frequency of high intensity rainfalls in the central Southern Alps, New Zealand. J. Roy. Soc. NZ, 14,213-226.

表1 18個東北季風降雨個案,包括個案起始時間、個案累積時間、 平均雨量、降水強度、平均 Froude number(Fr)、平均風速、 平均風向、平均混合比與平均相對溼度。

個案編號	開始時間	結束時間	累積時間	平均 累 雨	平均降 雨強度 (mm/hr)	平均 Fr	平均 風速 (m/s)	平均	平均混 合比 (g/kg)	平均 相對 溼度 (%)
1	2011/01/06 04 00 UTC	2011/01/06 10 00 UTC	07	7.71	1.1	2.35	17.44	19.29	0.0059	92.63
2	2011/01/14 23 00 UTC	2011/01/15 12 00 UTC	14	35.3	2.52	4.98	17.97	21.06	0.0049	83
3	2011/01/21 02 00 UTC	2011/01/21 10 00 UTC	09	10.38	1.15	2.64	16.08	27.13	0.006	91
4	2011/01/26 13 00 UTC	2011/01/26 20 00 UTC	08	16.24	2.03	2.03	16.26	47.56	0.0075	92.63
5	2011/01/28 05 00 UTC	2011/01/28 14 00 UTC	10	15.24	1.52	2.2	17.56	21.57	0.0068	93.5
6	2011/02/13 17 00 UTC	2011/02/14 05 00 UTC	13	22.16	1.7	3.58	16.56	17.37	0.0052	88.08
7	2011/12/09 12 00 UTC	2011/12/10 15 00 UTC	28	72.47	2.6	3.55	18.29	33.4	0.0062	86.67
8	2011/12/12 03 00 UTC	2011/12/12 11 00 UTC	09	17.47	1.94	1.91	13.91	46.2	0.009	90.5
9	2011/12/12 13 00 UTC	2011/12/12 24 00 UTC	12	22.5	1.88	2.08	15.75	50.41	0.0101	89.83
10	2011/12/14 24 00 UTC	2011/12/16 12 00 UTC	37	71.99	1.95	3.0	18.26	28.26	0.007	89.57
11	2012/01/07 07 00 UTC	2012/01/08 09 00 UTC	27	51.73	1.92	1.83	14.85	42.69	0.0085	93.58
12	2012/02/17 10 00 UTC	2012/02/17 15 00 UTC	06	9.0	1.5	3.08	17.35	29.05	0.0049	85
13	2012/12/22 10 00 UTC	2012/12/22 18 00 UTC	09	24.5	2.72	2.9	18.34	23.49	0.0073	89
14	2013/01/02 11 00 UTC	2013/01/02 16 00 UTC	06	6.25	1.042	2.25	18	30.95	0.009	93
15	2013/01/04 07 00 UTC	2013/01/04 18 00 UTC	12	18.75	1.56	1.61	13.5	49.97	0.0084	93.33

表1 (續)

16	2013/01/06 08 00 UTC	2013/01/06 16 00 UTC	09	14.82	1.65	1.44	12.35	43.78	0.0094	94.42
17	2013/02/07 08 00 UTC	2013/02/07 22 00 UTC	15	32.84	2.19	2.34	17.44	42.3	0.0076	93.13
18	2013/02/22 02 00 UTC	2013/02/22 10 00 UTC	09	15.52	1.72	1.8	14.71	27.61	0.0087	92.3

表 2 模式計算所得之均方根誤差與相關分析。

	最佳rmse	最佳rmse	国什一	山田松樹		
case	計算之γ	計算之r _s	取住rmse	伯		
case01	1.8	0.83	0.89	0.62		
case02	0	0.73	0.45	0.88		
case03	1.5	0.83	0.80	0.80		
case04	1.7	0.83	0.70	0.80		
case05	1.8	0.83	0.85	0.64		
case06	0	0.825	0.67	0.77		
case07	0.1	0.785	0.54	0.86		
case08	1.3	0.815	0.68	0.74		
case09	1.4	0.81	0.73	0.74		
case10	1.3	0.805	0.69	0.82		
case11	1.8	0.83	0.87	0.63		
case12	1.1	0.775	0.51	0.84		
case13	1.5	0.8	0.79	0.60		
case14	1.9	0.83	0.96	0.40		
case15	1.8	0.83	0.66	0.49		
case16	1.8	0.83	0.81	0.36		
case17	1.8	0.83	0.91	0.37		
case18	1.8	0.83	0.94	0.19		

圖 1.1 簡單地形降水機制示意圖。(a)種雲播雲機制(Seeder-feeder mechanism);(b)地形斜坡強迫舉升凝結機制(Upslope forcing);
(c)地形斜坡激發機制(upslope triggering);(d)地形上游減速激發機制(Upstream triggering);(e)熱力激發機制(Thermal triggering);(f)背風面輻合激發機制(Lee-side triggering);(g)背風面重力波加強機制(Lee-side enhancement by gravity waves)(圖摘取自Houze 1993)。

圖 2.1 測站分佈圖,色階為地形高度(單位:公尺,間距如圖左下 方所標示),圖中標示符號所代表的測站類型於圖右下方說 明,圖中黃色曲線區域內為本研究選取東北季風個案的雨量 站範圍。

圖 2.2 累積雨量分佈圖。(a) 個案1僅氣象局雨量資料之雨量分佈 圖;(b) 個案1加入大屯山區密集雨量觀測網雨量分佈圖; (c) 個案2僅氣象局雨量資料之雨量分佈圖;(d) 個案2加 入大屯山區密集雨量觀測網雨量分佈圖(客觀分析並使用 Cressman (1959)權重函數將其轉為網格資料繪製而成,色 階為實際雨量,單位:mm,間距為圖上方所標示;網線為 地形高度,單位:m,間距如圖右側所標示),圖中星號為本 系傾斗式雨量筒、實心正方形為氣象局局屬站、空心圓形為 氣象局自動氣象站,實心圓形為氣象局自動雨量站。

圖 2.3 NCEP-FNL 再分析資料的網格資料分佈,本研究使用大屯山 上游的單點網格點資料(紅色空心圓),網格點經緯度為 122 。 E,26°N。

圖 2.4 氣壓與垂直速度的遞減率的變化 (圖摘取自 Sinclair 1994)。

圖 2.5 平流過程示意圖。 (a) 氣流受地形舉升凝結後,直接落至地 表;(b) 氣流受地形舉升凝結後,雨滴受水平風場的平移,進 而落至地表。(圖摘取自鄭凌文 2008)。

圖 2.6 $t_f(p)$ 方程式(2.7)考慮水氣凝結成水滴所需的時間 (Formation time)(圖摘取自 Sinclair 1994)。

圖 3.1 本研究 18 個東北季風個案的 NCEP-FNL 的平均斜溫圖,藉 此描述地形上游的平均大氣環境條件,右側風標為水平風隨 高度變化 (half-bar = 2.5 m s^{-1} , full bar = 5 m s^{-1})。

圖 4.1 東北季風 18 個個案的平均雨量分佈圖。(客觀分析並使用 Cressman (1959)權重函數將其轉為網格資料繪製而成,色階 為實際雨量,單位:mm,間距為圖上方所標示;網線為地形 高度,單位:m,間距如圖右側所標示),圖中星號為本系傾 斗式雨量筒、實心正方形為氣象局局屬站、空心圓形為氣象 局自動氣象站,實心圓形為氣象局自動雨量站。

圖 4.2 個案實際累積雨量分佈圖。(a)個案 1;(b)個案 2;(c)個案 3; (d)個案 4;(e)個案 5;(f)個案 6;(g)個案 7;(h)個案 8;(i) 個 案 9;(j)個案 10;(k)個案 11;(l)個案 12;(m)個案 13;(n)個 案 14;(o)個案 15;(p)個案 16;(q)個案 17;(r)個案 18(客觀 分析並使用 Cressman (1959)權重函數將其轉為網格資料繪製 而成,色階為實際雨量,單位:mm,間距為圖上方所標示; 網線為地形高度,單位:m,間距如圖右側所標示),圖中星 號為本系傾斗式雨量筒、實心正方形為氣象局局屬站、空心 圓形為氣象局自動氣象站,實心圓形為氣象局自動雨量站。

圖 4.2 (續)

圖 4.2 (續)

圖 4.2 (續)

圖 5.1 均方根誤差隨γ與r_s的分佈,各個案的 RMES、γ、r_s如表 2 所示。(a) 個 案 1; RMSE=0.89 (b) 個案 2; RMSE=0.45 (c) 個案 3; RMSE=0.8 (d) 個 案 4; RMSE=0.7 (e) 個案 5; RMSE=0.85 (f) 個案 6; RMSE=0.67 (g) 個 案 7; RMSE=0.54 (h) 個案 8; RMSE=0.68 (i) 個案 9; RMSE=0.73 (j) 個 案 10; RMSE=0.69 (k) 個案 11; RMSE=0.87 (l) 個案 12; RMSE=0.51 (m) 個案 13; RMSE=0.79 (n) 個案 14; RMSE=0.96 (o) 個案 15; RMSE=0.66 (p) 個案 16; RMSE=0.81 (q) 個案 17; RMSE=0.91 (r) 個案 18; RMSE=0.94 (色階為 RMSE, 間距如圖上所標示)

0.50 1.10 1.70 2.30 2.90 3.50 4.10 4.70 5.30 5.90 6.50 7.10 7.70 8.30

h

0.83

0.81

0.79

0.77

0.75

RH

0.5

1.0 Gamma

1.5

2.0

圖 5.1 (續)

圖 5.1 (續)

圖 5.2 個案模擬雨量分佈圖。(a) 個案 1; $\gamma = 1.8 \cdot r_s = 0.83$ (b) 個案 2; $\gamma = 0 \cdot r_s = 0.73$ (c) 個案 3; $\gamma = 1.5 \cdot r_s = 0.83$ (d) 個案 4; $\gamma = 1.7 \cdot r_s = 0.83$ (e) 個案 5; $\gamma = 1.8 \cdot r_s = 0.83$ (f) 個案 6; $\gamma = 0 \cdot r_s = 0.825$ (g) 個案 7; $\gamma = 0.1 \cdot r_s = 0.785$ (h) 個案 8; $\gamma = 1.3 \cdot r_s = 0.815$ (i) 個案 9; $\gamma = 1.4 \cdot r_s = 0.81$ (j) 個案 10; $\gamma = 1.3 \cdot r_s = 0.805$ (k) 個案 11; $\gamma = 1.8 \cdot r_s = 0.83$ (l) 個案 12; $\gamma = 1.1 \cdot r_s = 0.775$ (m) 個案 13; $\gamma = 1.5 \cdot r_s = 0.83$ (n) 個案 14; $\gamma = 1.9 \cdot r_s = 0.83$ (o) 個案 15; $\gamma = 1.8 \cdot r_s = 0.83$ (p) 個案 16; $\gamma = 1.8 \cdot r_s = 0.83$ (q) 個案 17; $\gamma = 1.8 \cdot r_s = 0.83$ (r) 個案 18; $\gamma = 1 \cdot r_s = 0.83 \cdot r_s = 0.83$ (r) 個素 18; $\gamma = 1 \cdot r_s = 0.83 \cdot r_s = 0.83$ (r) 個素 18; $\gamma = 1 \cdot r_s = 0.83 \cdot r_s = 0.83$ (r) 個素 18; $\gamma = 1 \cdot r_s = 0.83 \cdot r_s = 0.83$ (r) 個素 18; $\gamma = 1 \cdot r_s = 0.83 \cdot r_s = 0.83 \cdot r_s = 0.83 \cdot r_s = 0.83$ (r) 個素 18; $\gamma = 1 \cdot r_s = 0.83 \cdot r_s = 0.83 \cdot r_s = 0.83 \cdot r_s = 0.83$ (r) 個素 18; $\gamma = 1 \cdot r_s = 0.83 \cdot r_s$

圖 5.2 (續)

圖 5.2 (續)

圖 5.2 (續)

圖 5.3 觀測雨量站與模擬雨量之相關分析。 (a)個案 1;相關係數 =0.62 (b)個案 2;相關係數=0.88 (c)個案 3;相關係數=0.8 (d) 個案 4;相關係數=0.8 (e)個案 5;相關係數= 0.64 (f)個案 6; 相關係數=0.77(g)個案 7;相關係數=0.86 (h)個案 8;相關係數 =0.74 (i)個案 9;相關係數=0.74 (j)個案 10;相關係數=0.82 (k) 個案 11;相關係數= 0.63 (l)個案 12;相關係數=0.84(m)個案 13;相關係數=0.6 (n)個案 14;相關係數=0.4(o)個案 15;相關 係數=0.49 (p)個案 16;相關係數=0.36 (q)個案 17;相關係數= 0.37 (r)個案 18;相關係數=0.19。

圖 5.3 (續)

圖 5.3 (續)

