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Outline

» Some background

* Froude number (dynamically mountain-
Induced circulation and precipitation)

* Thermodynamically mountain-induced
circulation and precipitation

» Challenges






Which location can cloud and precipitation be
generated by a mountain barrier ?
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Interaction of incident flow with topography
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Precipitation location depends on flow regimes
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Cloud formation due to orographic lifting

(possible spillover for narrow barrier or strong winds)

narrow barrier (short liting section)



Upstream deceleration of prefrontal southwesterly flow by coastal
mountains (Yu and Smull 2000)
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Contours of cross-barrier flow component
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-Side triggering
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Occurrence of low-level convergence on the leeside of Olympic
Mountains under small Froude number flow regime (Mass 1981)
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Lee-side enhancement or triggering by
gravity waves
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Influence of multiple waves on orographic precipitation
(Garvert et al. 2007, JAS)
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FiG. 19. Three-dimensional idealized schematic of topography and wind flow over the
IMPROVE study area from 2300 to 0100 UTC 13-14 Dec 2001. Blue arrows show strong
southerly low 6, airflow at low levels along the windward (west facing) slopes of the Cascade
range which was subsequently involved in wave generation over multiple small-scale east-
west-oriented ridges—valleys within the Cascade foothills. Red arrows show the high 6, cross-
barrier flow that surmounted the low 6, air and exhibited a vertically propagating mountain-
wave structure anchored to the mean north-south Cascade crest.




In addition to dynamically mountain-induced
circulation and precipitation, thermal forcings
assoclated with mountain effects are often
observed to produce cloud and precipitation



Thermal triggering
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evelopment of cumulus cloud along he rld es of
SMR near noon




Summertime thunderstorm initiation over mountains of Colorado
and New Mexico over different ridgetop winds (Schaaf et al. 1988)
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Importance of mountain-land breeze on
generating nighttime Cumulus offshore of Hawaii

Garrett (1980)
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Buildings are some sort of low topography,
which can also play a role in modulating
precipitation
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Scatter plot of building percentage vs.

frequency of radar reflectivity

Correlation coefficient= 0.6228 Correlation coefficient=0.5727
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Challenge |

Processes of orographic precipitation are often
beyond such a scope of knowledge and usually
more complicated

Inherent complexity of orographic geometries

High variety of ambient flow and precipitation
associated with fronts, typhoons, and other
strong synoptic forcings

Influences of convectively generated circulations
Interactions among above factors



Convergence of the windward flow into valleys (Houze 1998)

(Three-dimensional nature of airflow over mountains)




MAP IOP2b (Medina and Houze 2003)




Improve understanding for the impact of complicated terrain profiles
on precipitation distribution and intensity through modeling efforts
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Important note:

Severe orographic precipitation is usually
not caused by simple interactions between
incident flow and mountains, and instead,



Considerable preexisting precipitation associated with

weather systems (TCs, cyclones, and fronts)
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Microphysical interaction between preexisting
cloud and orographically generated cloud
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Tropical cyclone rainbands and fronal rainbands are generated as
a consequence of internal dynamics of TCs and fronts

An example showing rapid evolution of a TCR as it passed over
complex terrain of northern Taiwan (Yu and Tsai 2015)

a. pre-landfall

b. Northern Landfalling Segment (NLS) c. Southern Landfalling Segment (SLS)




Airflow and precipitation structure of a narrow cold frontal
rainband (Carbone 1982)
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Strong interaction between the blocked, along-barrier flow
and postfrontal flow (Neiman et al. 2004)
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Neiman et al. (2004)

(b) Cross-section perspective
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Distortion of frontal zone by upstream blocking
Yu and Bond (2002)
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Figure 14. Schematic diagram gqualitatively illustrating the movement of the front
during the aircraft observation and resul tortion of the nearshore segment of the
front in the latter part of the flight. Th fthe front over Vancouver Island are
not indicated due to the lack of aircraf ns. Thick arrow s denote the moving
direction of the front. L denotes the ups extent of the terrain blocking.




Enhanced convergence associated with frontal distortion

Yu and Bond (2002)
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Challenge I

Sparse observations over mountains of northern Taiwan
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R #EEY B http://www.cna.com.tw/news/firstnews/201508105018-1.as
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Aircraft and radar observations are important for OP research
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Difficulties in observing NBB rain
with WSR-88D radars
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Previous field experiments conducted to
Improve understanding of precipitation
processes nearby topography



Rain Gauge Network over Da-Tun Mountains (DTRGN)
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240-h rainfall accumulation from 18 cases during
the northeasterly monsoon (2011-2013)

DTRGN+CWB
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