蒲金標

月相對松山機場海平面氣壓影響之分析研究 —西元1978年2月7日至2008年2月6日

蒲金標*

私立中國文化大學大氣科學系

(中華民國九十七年四月十二日收稿;中華民國九十七年十一月十六日定稿)

摘 要

本文嘗試以 1978 年 2 月 7 日(陰曆正月初一)至 2008 年 2 月 6 日(陰曆十二月二十九日)期間 松山機場每日 24 個整點海平面氣壓觀測紀錄,來分析月相(the moon phases)或大氣太陰潮(lunar atmospheric tides)對松山機場平均海平面氣壓之影響。研究結果顯示松山機場年平均海平面氣壓日變化 曲線有半日潮或兩高兩低現象。每日最高氣壓和最低氣壓皆在日間(0900L 和 1500L)發生,因台北盆地 日間受太陽輻射增溫之影響,其氣壓振幅較大,且兩者的相位也比一般中緯度地區提早 1 小時。而次 高氣壓和次低氣壓皆在夜間(2200L 和 0400L)發生,其氣壓振幅較小,同時兩者的相位皆與一般中緯度 地區一致。

松山機場在朔望月(synodic month)裡,每逢陰曆朔日(初一)或望日(十五日),受太陽與月球之 引潮力(Tide-producing force)方向一致,太陽潮(solar tide)和太陰潮(lunar tide)重疊影響,其全日和逐時 平均海平面氣壓比年平均為低;而每逢上弦(初七)和下弦(二十一日)時,日地與月地的相對位置 成直角,太陰潮和太陽潮相干擾,其全日和逐時平均海平面氣壓則比全年平均為高。朔望日和上下弦 海平面氣壓之日變化,四者都與年平均海平面氣壓有相同之半日潮或兩高兩低現象,且四者相位與年 平均者一致。

每當朔日和望日颱風可能侵襲松山機場或颱風在其附近之機會比上弦和下弦者為大,前者約為後 者的 5.5 倍。

關鍵詞:大氣太陰潮、大氣太陽潮、氣壓日變化、半日潮、颱風、月相、朔望月、上弦月和 下弦月

* Email: pu1947@ms14.hinet.net

一、前 言

Saucier(1972)論述任一測站之氣壓日變化, 全日最高氣壓值約發生在當地時間 1000L,次高 氣壓值發生在 2200L 附近;最低氣壓值約發生在 當地時間 1600L,次低氣壓值發生在 0400L 附近。

蒲(2001)研究顯示,松山機場 1979~1998年, 20 年總平均海平面氣壓為 1014.3hPa,它比全球 平均海平面氣壓 1013.25hPa 略為高些。松山機場 20 年全日逐時平均海平面氣壓之日變化曲線有 兩次升降現象,唯全日最高氣壓(平均 1015.1hPa;正距平值+1.1hPa)發生在 0900L,其 相位比一般地區提早 1 小時;次高氣壓 (1014.8hPa;正距平值+0.8hPa)發生在 2200L; 最低氣壓(1012.7hPa;負距平值-1.3hPa)發生在 1500L,其相位也比一般地區提早 1 小時;次低 氣壓(1013.5hPa;負距平值-0.5hPa)發生在 0300~0400L,無論全日最高氣壓或最低氣壓,其 白天振幅皆大於晚間。

大氣百科全書(Hagan et al, 2003)指出,大氣 潮(atmospheric tides)是全球周期性的大氣振盪 (oscillations),大氣潮受太陽規律性晝夜日入射、 月球引力和潮汐與行星波動之間非線性交互作用 等影響。唯由月球引力所產生之大氣太陰潮 (lunar atmospheric tide;月球引力)比由晝夜日 入射所產生之大氣太陽潮(solar atmospheric tide;熱力)爲弱。

郭和林(1992)指出,在一個朔望月裡,月球 運行正處於地球和太陽之間時,從地球上看,日 月角距爲零,此時叫做日月相合;當月球運行到 地球和太陽之外側時,從地球上看,日、月角距 為180°,此時叫做日月相衝。依此循環往復的過 程,就是日月的會合運動。換言之,月球從日月 相合(或相衝)再回到日月相合(或相衝)的運 動,叫做日月會合運動,而日月會合運動的周期 就是朔望月。日月相合時,月球的向陽面正好完 全背向地球,所以在地球上看不到明亮的月球, 這時的月相叫做新月或朔日,此時正值朔望月的 初一。當月球運行到和太陽角距為 90°時,月球 的向陽面的一半對著地球,所以在地球上看到西 邊半圓形的月相,叫上弦月,此時正値朔望月的 初七或初八。當日月相衝時,月球和太陽角距 180°,月球向陽面完全對著地球,所以在地球上 看就是一輪圓形明月,叫做滿月或望日,此時正 值朔望月的十五日前後。當月球運行至和太陽角 距為 270°時,月球向陽面一半又對著地球,但此 時在地球上看是東邊半圓形的月相,叫下弦月, 此時正值朔望月的二十一日或二十二日。在朔望 月裡,我們在地球上所見到的月球視亮面形狀的 變化,稱為月相。

本文為了解大氣太陰潮或月相對松山機場海 平面氣壓之影響,嘗試以松山機場每日整點海平 面氣壓,來分析月相對松山機場平均海平面氣壓 影響之大小,以期作為各項模擬和天氣預報之參 考。

二、資料來源

本文資料採用 1978 年 2 月 7 日至 2008 年 2 月 6 日共計 30 年民用航空局飛航服務總台所屬松 山機場航空氣象台(25°04'10"N;121°33'06"E)每日 24 小時整點海平面氣壓觀測紀錄,同時將陽曆每 年 12 個月觀測紀錄轉換成陰曆紀元每年正月至 十二月期間每月初 1 至 29 日每日 24 小時整點紀 錄。陰曆約每隔 3 年有一個閏年,閏年有 13 個月, 這 30 年期間有 11 個閏年,因此 30 年總計 371

陰曆	+	+	+	正	11	111	四	五	六	セ	へ	九	会計
月份	月	月	月	月	月	月	月	月	月	月	月	月	
月數	20	19	18	18	16	16	14	16	15 (14+1 閏月)	15	16	15	198
比 率 (%)	54.04					45.96						100	

表一 1978年2月7日至2008年2月6日陰曆月份有30日之分布

個初1(初2,初3,初4…29日),371個初1 有8904 筆整點氣壓觀測紀錄,其中松山機場航空 氣象台在1988年7月28~31日(陰曆6月15~18 日)缺氣壓紀錄,陰曆15~18日分別只有8880 筆整點紀錄。

陰曆每月的日數為 29 日或 30 日,但並非每 月皆有 30 日,因此在這 30 年期間陰曆月份有 30 日僅 198 個月,計有 4752 筆整點氣壓觀測紀錄。 在這 198 個月裡,分布在陰曆十月至翌年三月的 月數較多,約佔總月數的 54.04%;分布在陰曆四 月至九月者較少,約佔 45.96%,如表一。通常陰 曆十月至翌年三月的氣壓較高,陰曆四月至九月 的氣壓較低,因此陰曆 30 日平均海平面氣壓比其 他日為高是必然的。本文將排除陰曆每月 30 日, 不列入比較分析。

三、研究方法

本文以 1978 年 2 月 7 日 (陰曆正月初一)至 2008 年 2 月 6 日 (陰曆十二月二十九日)共計 30 年松山機場每日 24 小時整點海平面氣壓觀測紀 錄,首先將 30 年所有的 24 小時整點海平面氣壓 全部統計平均,求得 30 年期間海平面總平均值, 再按 30 年期間每天二十四小時逐時分別統計平 均,求得 30 年期間年平均海平面氣壓日變化。

由於氣壓四季高低變化很大,全年秋冬氣壓 比較春夏為高,為了容易比較起見,將所有整點 海平面氣壓分別減去 30 年期間海平面總平均 値,求得 30 年期間每日逐時海平面氣壓距平之日 變化。接著依照陰曆月份,初一至二十九日,按 日二十四小時逐時海平面氣壓距平分別統計平 均,求得 1978 年 2 月 7 日至 2008 年 2 月 6 日陰 曆初一至二十九日逐日二十四小時平均海平面氣 壓距平分布。

再選擇這 30 年所有陰曆朔日(初一)、上弦 (初七)、望日(十五日)及下弦(二十一日), 求得該等月相二十四小時松山機場平均海平面氣 壓距平之日變化分布,以作為各月相海平面氣壓 日變化之振幅與年平均者加以比較。最後分析 30 年陰曆初一至二十九日海平面氣壓低於 998hPa 之平均出現次數,或許可作為陰曆初一至二十九 日有颱風侵襲機率之參考。

四、研究成果

本文以1978年2月7日(陰曆正月初一)至 2008年2月6日(陰曆十二月二十九日)30年松 山機場每日24小時整點海平面氣壓觀測紀錄,就 年平均海平面氣壓之日變化、陰曆初一至二十九 日平均海平面氣壓之月變化、月相與年平均海平 面氣壓日變化之比較以及海平面氣壓低於 998hPa之平均出現次數等加以分析。

(一) 年平均海平面氣壓之日變化

本節就 1978 年 2 月 7 日 (陰曆正月初一)至 2008 年 2 月 6 日 (陰曆十二月二十九日) 松山機 場年平均海平面氣壓距平日變化加以分析 (圖 1),松山機場 30 年平均海平面氣壓為 1014.20 hPa,全日最高氣壓(1015.34hPa;正值+1.14hPa) 發生在 0900L,其相位比一般中緯度地區提早 1 小時;次高氣壓(1015.01hPa;正值+0.81hPa) 發生在 2200L。全日最低氣壓(1012.89hPa;負 值 -1.31 hPa) 發生在 1500L,其相位也比一般中 緯地區提早 1 小時;次低氣壓(1013.70hPa;負値-0.50 hPa)發生在 0400L。

以上分析顯示松山機場測站逐時平均海平面 氣壓日變化曲線有最高、次高、最低以及次低, 也即每天逐時平均氣壓有半日潮或兩高兩低現 象。每日最高氣壓和最低氣壓皆發生在日間 (0900L和1500L),因台北盆地日間受太陽輻射 增溫之影響,其氣壓振幅較大,且兩者的相位也 比一般中緯度地區提早1小時。而次高氣壓和次 低氣壓皆在夜間(2200L和0400L)發生,其氣 壓振幅較小,同時兩者的相位皆與一般中緯度地 區一致。

(二)陰曆初一至二十九日平均海平面氣壓之 月變化

本節分析 30 年松山機場陰曆初一至二十九 日逐日平均海平面氣壓距平月變化,如圖 2。

圖2顯示松山機場陰曆朔日(初一)和望日

圖 1 1978年2月7日至2008年2月6日松山機場年平均海平面氣壓距平之日 變化,其中30年平均海平面氣壓為1014.2hPa。

圖 2 1978 年 2 月 7 日至 2008 年 2 月 6 日松山機場陰暦初一至二十九日年平均 海平面氣壓距平之月變化。

(十五日)平均海平面氣壓皆為負距平,其値分 別為 -0.28hPa 和 -0.17 hPa。上弦(初七)和下 弦(二十一日)皆為正距平,其値分別為 0.23hPa 和 0.43hPa。

以上分析顯示松山機場每逢朔日和望日,受 太陽與月球引潮力方向一致,太陽潮和太陰潮重 疊影響,其平均海平面氣壓比年平均為低;每逢 上弦和下弦時,日地與月地的相對位置成直角, 太陰潮和太陽潮相干擾,其平均海平面氣壓比年 平均為高。

(三)月相與年平均海平面氣壓距平日變化之 比較

本節選擇 1978 年 2 月 7 日至 2008 年 2 月 6 日朔望日、上下弦與年平均松山機場平均海平面 氣壓距平日變化比較。

松山機場朔日(望日)全日最高氣壓 1015.01hPa (1015.18hPa)發生在 0900L,其相位與 年平均一致,但其氣壓比年平均為低,差值為 -0.33hPa (-0.16hPa),如圖 3 及表二;次高氣壓 1014.76hPa (1014.83hPa)發生在 2200L,其相位與 年平均一致,但其氣壓比年平均為低,差值為 -0.25hPa (-0.18hPa)。全日最低氣壓 1012.65hPa (1012.75hPa)發生在 1500L,其相位與年平均一 致,但其氣壓比年平均低,差值為 -0.24hPa (-0.14hPa);次低氣壓 1013.41hPa (1013.17hPa)發 生在 0400L,相位與年平均一致,但其氣壓比年 平均為低,差值為-0.29hPa (-0.18hPa)。

上弦(下弦)海平面氣壓距平比全年平均為高,其平均差値達 0.24 (0.42hPa)之多,其中上弦 (下弦)全日最高氣壓 1015.58hPa (1015.74hPa) 發生在 0900L,其相位與年平均一致,但其氣壓 比年平均為高,兩者相差 0.24hPa (0.30hPa);次 高氣壓 1015.12hPa (1014.38hPa)發生在 2200L,其 相位與年平均一致,但其氣壓比年平均為高,兩 者 相 差 0.11hPa (0.37hPa)。全日 最低氣壓 1013.12hPa (1013.35hPa)發生在 1500L,其相位與 年平均一致,但其氣壓比年平均為高,兩者相差 0.23hPa (0.46hPa);次低氣壓 1014.07hPa (1014.17 hPa)發生在 0400L,相位與年平均一致,但其氣 壓比年平均為高,兩者相差 0.33hPa (0.48hPa)。

以上分析顯示松山機場朔望日和上下弦海平 面氣壓距平之日變化,四者都與全年平均海平面 氣壓距平相同之半日潮兩高兩低現象,且四者相

圖 3 1978 年 2 月 7 日至 2008 年 2 月 6 日朔望日、上下弦和年平均松山機場 年平均海平面氣壓距平日變化之比較。(a)朔日、上弦及年平均,(b)望日、 下弦及年平均。

	全日次低氣 壓(0400L)	全日最高氣壓 (0900L)	全日最低氣壓 (1500L)	全日次高氣壓 (2200L)	平 均
年平均	1013.70hPa	1015.34hPa	1012.89hPa	1015.01hPa	1014.24hPa
朔 日 (初一)	1013.41hPa	1015.01hPa	1012.65hPa	1014.76hPa	1013.96hPa
上 弦 (初七)	1014.07hPa	1015.58hPa	1013.12hPa	1015.12hPa	1014.47hPa
望 日 (十五)	1013.52hPa	1015.18hPa	1012.75hPa	1014.83hPa	1014.07hPa
下 弦 (ニキー)	1014.18hPa	1015.74hPa	1013.35hPa	1015.38hPa	1014.67hPa
初 一 減年平均	-0.29hPa	-0.33hPa	-0.24hPa	-0.25hPa	-0.28hPa
初 七 減年平均	+0.33hPa	+0.24hPa	+0.23hPa	+0.11hPa	0.23hPa
十 五 日 減年平均	-0.18hPa	-0.16hPa	-0.14hPa	-0.18hPa	-0.17hPa
二十二日 減年平均	+0.48hPa	+0.40hPa	+0.46hPa	+0.37hPa	0.43hPa

表二 松山機場朔望日、上下弦與年平均海平面氣壓日變化之比較

位與年平均者一致。同時朔日和望日每小時氣壓 皆比年平均為低,而上弦和下弦每小時氣壓皆比 年平均為高。松山機場在全日最高氣壓正距平値 和全日最低氣壓負距平値,兩者差值達 2.45hPa。

(四)陰曆初一至二十九日海平面氣壓低於 998hPa之平均出現次數

因颱風侵襲松山機場或在附近時,松山機場 海平面氣壓通常比較可能出現低於 998hPa,本節 嘗試分析松山機場陰曆初一至二十九日整點海平 面氣壓低於 998hPa 出現次數。

圖 4 顯示陰曆初一至二十九日松山機場海平 面氣壓(<998hPa)之平均出現次數分布,初一至初 三平均出現次數在 4.1 次與 7.5 次之間,其中朔日 (初一)出現 7.5 次為全月裡最高者。初四至初 七出現次數降至 2 次以下,其中上弦(初七)更 是降至 0.8 次。初八至二十日平均出現次數增加, 其中望日(十五日)出現 4.0 次。二十一日至二 十五日平均出現次數相對比較低,其中下弦(二 十一日)出現 1.3 次。二十六至二十九日平均出 現次數又見增加,分別為 4.8 次、5.2 次和 4.7 次, 這三天是屬於全月出現次數的次高鋒。另外,陰 曆三十日平均出現 0.8 次,如果該出現次數併入 二十九日,二十九日平均出現 5.5 次,則時間序 列在 1 日與 29 日之間就具有連續性。

1978~2007 年松山機場平均海平面氣壓低於 998hPa 出現次數之年際變化顯示,氣壓低於 998hPa 出現 4.0 次以上有 1982 年、1990 年、1992

圖 4 1978 年 2 月 7 日至 2008 年 2 月 6 日陰曆初一至二十九日松山機場 平均海平面氣壓低於 998hPa 之平均出現次數。

圖 5 1978~2007 年松山機場平均海平面氣壓低於 998hPa 出現次數之年際 變化。

年、1994年、2002年、2004年、2005年和2007 年等8年,其中以1990年9次爲最多,2004年 7.8次爲次之,1992年6.7次爲再次之。出現 1.0~3.9次有16年;出現0.9次以下有7個年份, 其中1988年、1993年、1995年和2003年沒出現 過。30 年平均出現次數為 3.0 次。簡言之, 1978~2007 年松山機場平均海平面氣壓低於 998hPa出現次數之年際變化尙屬於正常分布。

以上分析顯示松山機場在過去 30 年平均海 平面氣壓低於 998hPa 出現次數之年際變化尙屬 於正常分布之下,每逢朔日和望日,太陽與月球 引潮力方向一致,太陽潮和太陰潮重疊,海平面 氣壓(<998hPa)出現次數偏多,分別為7.5次和4.0 次。每逢上弦和下弦時,日地與月地的相對位置 成直角,太陰潮和太陽潮相干擾,造成松山機場 每逢上弦和下弦海平面氣壓(<998hPa)出現次數 偏低,分別為0.8次和1.3次。簡言之,朔日和望 日颱風可能侵襲松山機場或颱風在其附近之機會 比上弦和下弦者為大,前者約為後者的5.5倍。

五、討 論

1978年2月7日至2008年2月6日松山機 場測站30年總平均海平面氣壓為1014.20hPa,比 全球平均海平面氣壓1013.25hPa略高0.95hPa。 蒲(2001)研究顯示,松山機場1979~1998年,20 年總平均海平面氣壓為1014.3hPa,本文30年平 均海平面氣壓1014.20hPa略為低0.1hPa。

本文松山機場 30 年全日逐時平均海平面氣 壓之日變化曲線有半日潮或兩高兩低現象,其全 日最高、次高、最低以及次低等平均氣壓值以及 發生時間,大致與蒲(2001)研究結果相似,唯全 日最高和最低氣壓值發生時間比 Saucier (1972)所 論述者提早1小時。

王(1971)及蒲(1973)認為月球對地球之位 置,在適當情況下,有利熱帶低壓之形成及熱帶 風暴之發展,同時其漲潮力對颱風之運行亦有影 響。本文分析發現,朔日和望日颱風可能侵襲松 山機場或颱風在其附近之機會比上弦和下弦為 大,前者約為後者的 5.5 倍。本文將進一步分析 中央氣象局百年侵台颱風實際資料,來佐證此推 論的代表性。

本文認爲月相對地表的氣壓變化有很重要的

影響,這些氣壓變化常隱藏在短暫的綜觀和中尺 度系統移動和發展中,尤其在無顯著天氣系統 時,更是主宰氣壓之上升和下降。朔望月裡氣壓 變化,其升降之時空變異性(spatial and temporal variability),對分離短暫天氣系統之氣壓變化,非 常有用,本文研究結果將可供參考。

六、結 論

本文嘗試以1978年2月7日(陰曆正月初一) 至2008年2月6日(陰曆十二月二十九日)期間 松山機場航空氣象台每日24個整點海平面氣壓 觀測紀錄,分析月相或大氣太陰潮對松山機場平 均海平面氣壓之日變化情形,初步獲得下列研究 成果:

- (一)松山機場年平均海平面氣壓日變化曲線有有 半日潮或兩高兩低現象。每日最高氣壓和最 低氣壓皆在日間(0900L 和 1500L)發生, 因台北盆地日間受太陽輻射增溫之影響,其 氣壓振幅較大,且兩者的相位也比一般中緯 度地區提早1小時。而次高氣壓和次低氣壓 皆在夜間(2200L 和 0400L)發生,其氣壓 振幅較小,同時兩者的相位皆與一般中緯度 地區一致。
- (二)松山機場每逢朔日和望日,受太陽與月球引 潮力方向一致,太陽潮和太陰潮重疊影響, 其全日和逐時平均海平面氣壓比年平均為 低;每逢上弦和下弦時,日地與月地的相對 位置成直角,太陰潮和太陽潮相干擾,其全 日和逐時平均海平面氣壓則比全年平均為 高。
- (三)松山機場朔望日和上下弦海平面氣壓距平之 日變化,四者都與全年平均海平面氣壓距平

相同之半日潮兩高兩低現象,且四者相位與 年平均者一致。

(四)朔日和望日颱風可能侵襲松山機場或颱風在 其附近之機會比上弦和下弦者為大,前者約 為後者的 5.5 倍。

誌 謝

作者感謝國立中央大學大氣科學系教授王國 英博士提供意見,民航局飛航服務總台飛航業務 室陳海根課長以及台北航空氣象中心主任氣象員 退休同事林清榮先生協助資料處理。並感謝民航 局飛航服務總台台北航空氣象中心提供氣象觀測 資料,使本文能順利完成。

參考文獻

- 王崇岳,1971:漲潮力與颱風及反常氣候,「氣象 預報與分析」,空軍氣象聯隊編印,第47期, 1~10。
- 郭瑞濤和林政宏,1992:地球科學概論,新學識 文教出版中新心,PP.377。
- 蒲金標,1973:近七十六年來侵襲台灣颱風之分 析與研究。中國文化大學地學研究所碩士論 文,PP.92。
- 蒲金標,2001:台灣北部和南部氣壓日變化之分 析研究。大氣科學,29(3),191~202。
- Hagan, M.E., J.M. Forbes and A. Richmond, 2003 : Atmospheric Tides, Encyclopedia of Atmospheric Sciences.
- Saucier, W. J., 1972: Principles of Meteorological Analysis. University of Chicago Press, 438 PP.

285

The Study of the Influence of Moon Phases on the Mean Sea Level Pressure at Sung-Shan Airport February 7, 1978 to February 6, 2008

Chin-Piao Pu*

Department of Atmospheric Sciences, Taiwan Chinese Culture University

(Manuscript received 12 April 2008; in final form 16 November 2008)

ABSTRACT

This study of the influence of moon phases or lunar atmospheric tides on the mean sea level pressure at the Sungshan Airport is presented. The data analyzed are in the period between February 7, 1978 and February 7, 2008. The results indicate there is a semi-diurnal (or two-high and two-low) tide in the mean-sea-level pressure diurnal oscillations. The primary pressure maximum and minimum occur during the daytime at 0900L and 1500L, respectively, while the secondary maximum and minimum during the nighttime at 2200L and 0400L, respectively. Additionally, the amplitude extremes of the primary pressure oscillations are larger than the secondary extremes. However, the phase of the primary extremes is 1-hour lag behind that of the mid-latitudes, but there is no lag for the secondary.

During the New Moon (the 1st of a lunar month) and the Full Moon (the 15th of a lunar month) when the Earth, Moon, and Sun lie (approximately) in a straight line, the solar and the lunar tides overlap and the sea-level pressure is lower than the mean at the Airport, because the tide-producing force induced by the Sun and Moon reaches maximum. On the other hand, during the First Quarter (the 7th day of a lunar month) and the Last Quarter (the 21st of a lunar month) the Sun-Earth's and the Moon-Earth's relative positions are perpendicular to each other with respect to Earth, the solar and the lunar tides interfere mutually, the Airport sea-level pressure is greater than the annual mean due to the tide-producing force reaching minimum.

The semi-diurnal oscillations of these 4 days, namely: the New Moon, the Full Moon, the First Quarter, and the Last Quarter, have the pattern as the annual mean oscillation. Their phases are also the same as the annual mean.

During the New Moon and the Full Moon, the occurrences of typhoons have higher frequency of reaching the Airport than those of the First Quarter and the last Quarter, the former approximately for the latter's 5.5 times.

Key words : Lunar atmospheric tides, Solar atmospheric tides, The pressure diurnal changes, Semi-diurnal tides, Typhoon, Moon phases, The New Moon, The Full Moon, First Quarter and Last Quarter.

* Email: pu1947@ms14.hinet.net