贾新興 异清吉

南海季風實驗 (SCSMEX) 期間海氣通量 和海洋上層混合層之變化

贾新興¹ 吳清吉²

¹中央氣象局預報中心 ²國立台灣大學大氣科學系

(中華民國九十五年十月十三日收稿;中華民國九十六年三月二十日定稿)

摘 要

本文利用 1998 年南海季風實驗(SCSMEX)期間,海洋觀測平台在 13°N、114°E 附近的海氣觀測資料,研究南海地區季風爆發前和爆發時,海氣通量及海洋上層混合層的變化。南海季風爆發前,海面氣象場和海氣通量的日夜變化相當清楚;南海季風爆發時,日夜變化的現象也消失。比較季風爆發前和爆發時海面淨能量通量差異時可發現,在季風爆發前平均海面淨熱通量為 181.7W/m²,有加熱海洋的效應;在季風爆發時則變為-47.5W/m²,有冷卻海洋的作用。

海洋混合層的發展明顯受到海氣動量通量的影響,其日夜變化則受控於海面淨熱通量的變化。南 海季風爆發前,觀測海洋混合層的厚度具有明顯日夜變化的現象。當白天海面受熱時,近表面海溫升 高,形成穩定層,使紊流強度減弱、海洋混合層不易發展,平均白天混合層的厚度約為6m;反之夜間 表面冷卻時,近表面海溫降低形成不穩定層,使渦流強度增強、海洋混合層容易發展,夜間平均海洋 混合層的厚度約在22m。在季風爆發前,整個平均海洋混合層的厚度約為15.6m。當南海季風爆發時, 受海面風應力的混合作用和海面淨熱通量的冷卻作用,使得海洋混合層厚度日夜變化的現象消失,平 均海洋混合層的深度亦比季風爆發前深,約為23.3m。

關鍵詞:海洋混合層、日夜變化、海面淨熱通量

一、前 言

許多研究結果顯示,額外10 Wm⁻²的能量加 入,會造成模式模擬結果很大的差異。但是,海 洋環流模式對在暖池區能量收支的估計中,卻有 80 Wm⁻²的偏差(Godfrey and Lindstrom, 1989), 使 得正確模擬更加困難。另外,每日、及月平均的 氣象資料估算海-氣通量時的反應,也有相當大的 差異(Sui et al., 2003)。對海洋環流模式而言,必 須提供上邊界的海氣通量。其中動量通量驅動海 洋表面流和海洋表面的混合作用;熱通量和新鮮 水通量會影響海洋混合層的發展和海面溫度(Sea Surface Temperature, SST)的變化,而 SST 又是 大氣環流模式的下邊界條件。在一般情形 SST 的 變化主要是由海面淨熱通量和海洋混合過程決定 (Large et al. 1994)。SST 不像地面溫度具有明顯日 夜變化,但是在微風、強日照和無明顯天氣系統 時,SST 也有明顯的日夜變化,其大小約為 0.5 ℃左右,有時可達到 2℃(Bradley and Weller, 1995)。SST 的日夜變化,也使海洋上層混合層深 度有日夜變化(Moum et al. 1989;吳和賈, 1992)。

海洋混合層的發展主要受制於海面浮力項、 風應力的強迫混合機制,以及海洋動力過程。浮 力作用來自海面淨熱通量和海面新鮮水通量的淨 效應。對海洋而言,海面淨熱通量中的熱量損失 主要是由潛熱、可感熱通量和淨長波輻射而來。 在白天,入射的太陽短波輻射被海水吸收,加熱 海洋,使得海面淨熱通量變爲正(加熱海洋)。海 面新鮮水通量(包括蒸發和降水)也會改變 SST 和海面浮力項的大小。當海面浮力項爲正時,具 有穩定作用,使得海洋混合層變淺;反之,當海 面浮力項爲負時,則產生不穩定的自由混合作 用,使混合層加深,而風應力的強迫混合作用則 使海洋混合層更容易發展(Price, 1979; Lukas and Lindstrom, 1991)。

南海位於台灣西南側,是世界上最大的邊緣 海之一,且位於亞洲大陸和西太平洋的邊界,如 此獨特的地理位置,使得南海成為南半球季風、 西太平洋季風和印度季風會合的通道。Ding (1994)認為中國地區夏季降水的水氣來源的通道 之一,就是經過南海地區。1998年5月1日至6 月30日的南海季風實驗(SCSMEX)的主要科學目 標之一(Lau et al., 2000), 便是藉由現場詳細、密 集的觀測資料,研究南海季風爆發的物理過程、 維持機制和變化,以期進一步可改進對季風預報 的準確性。Nitta(1987)、Huang and Sun (1992)、 Lau and Weng (2000) 資料分析的結果,以及 Kang and Kimura(2003) 的數值模擬顯示,南海的變 化,對東亞季風的建立和發展扮演重要的角色。 Wang et al.(2004)分析 11 個大氣模式以 AMIP 預 報型熊的資料顯示,在明顯的 ENSO 狀態下,11 個模式仍舊對東南亞和西太平洋地區夏季降水預 報的能力偏低。他們認為,可能和區域海氣交互 作用的現象有關,因為 AMIP 的預報型態是以 SST 來激發大氣的反應,但真實的情況可能是大 氣影響海洋,而非海洋影響大氣。因此,欲瞭解 東亞的氣候變化,研究南海地區大氣與海洋之間 的交互作用是一重要的主題。Chen et al.(2003)利 用 NCEP 重分析月資料,研究南海海溫年循環的 機制,在不考慮海洋的動力過程時,發現短波輻 射通量的加熱和因風速增加造成的蒸發冷卻機 制,是造成春季後 SST 增暖和秋季 SST 冷卻的主 要原因。Liu et al.(2004)更分析南海地區 2000~2002 年三年間發生的 15 個颱風衛星資料, 結果發現透過海氣參數可以分析出颱風的形成以 及其潛勢雨量,準確率可達 93%。因此,研究南 海地區季風爆發前和爆發時海氣通量及海洋上層 混合層的變化,將有助於了解南海地區海氣交互 作用的特性。文中第二部份描述所使用的資料和 方法,第三部份為結果討論,最後部份為結論。

二、使用資料和方法

本文使用 1998 年南海季風實驗期間(簡稱: SCSMEX),海洋觀測平台在13°N、114°E的密集 觀測資料,這套觀測系統是由美國太平洋海洋實 驗室(Pacific Marine Environmental Laboratory, 簡稱 PMEL)所發展出來的自動溫度取得系統 (Autonomous Temperature Line Acquisition System , 簡稱 ATLAS), 儀器詳細的說明可參考網頁 http://www.pmel.noaa.gov。資料的取得主要是由 http://www.pmel.noaa.gov/tao/proj over/scsmex/scs mex-display.html, ATLAS 觀測平台的資料種類包 括:每10分鐘一次的海面氣象資料,由海面氣象 觀測系統得到,由於氣象儀器故障,分析時間從 1998年4月15日至6月15日;其中風速、風向 的觀測高度為 4m, 氣溫、比濕的觀測高度為 3m, 海面短波輻射通量的觀測高度為 3.5m。雨量的觀 測高度為 3.5m、SST 則由海面下 1m 處測得。關 於 SCSMEX 的報告可以參考 Lau et. al., (2000)。

因沒有直接觀測的海面長波輻射通量,故本 文參考 Berliand and Berliand (1952)、Fung et al.(1984)的方法來估計海面長波輻射通量即: $Q_{Iw} = -\varepsilon \sigma T_s (0.39 - 0.05\sqrt{e_s}) (1 - 0.64C^2) - 4\varepsilon \sigma$ $T_a^3 (T_s - T_a), 其中 \varepsilon 是海面長波發射率(0.98)、 \sigma$ 是史蒂芬波次曼常數(5.67×10⁻⁸)、 e_s 是海面水蒸 氣壓、 T_a 和 T_s 分別是氣溫和SST,單位爲凱氏溫 標, C 則代表雲量的影響(Clark et al. 1974)。雲量 資料的推估則採用 Reed(1977)的方法,利用觀測 的短波輻射量(Q_{sol})和晴天短波入射量(Q_{cls})的關 係來反演估計雲量。

 $Q_{sol} = Q_{cls}(1 - 0.62C - 0.0019A)$,式中A為太陽高度。

海氣通量的估計,則利用 TOGA-COARE 所 發展的整體通量計算法,TOGA-COARE 的整體 通量計算法的詳細說明,可參考 Fairall et al. (2003)。 賈 與 吳 (1998, 2006),亦 曾 採 用 TOGA-COARE 的整體通量計算法估計熱帶西太 平洋海氣通量的變化。為了解氣象場和各種通量 日夜變化的性質,文中對每 10 分鐘觀測一次的氣 象變數先作平均處理,得到每小時的平均值。海 面的可感熱通量和潛熱通量,亦由 10 分鐘的觀測 資料來估算後,再用相同的平均方法處理。

三、結果與討論

(一) 海面氣象場和渦流通量變化

圖 1 為海洋觀測平台在 13°N、114°E 的密集 氣象觀測資料,包括平均緯向風、平均經向風、 平均風速、海面比濕、大氣比濕、大氣溫度、SST 和每小時累積降雨的變化。圖1顯示,從4月21 日至5月20日,大氣低層風場主要吹的是東南風 (圖1)。之後受一波中緯度系統侵入南海,同時 副高勢力退出南海地區,這波中緯度系統對於南 海季風的爆發扮演重要的角色(Ding and Liu, 2001)。至5月下旬(5月21日)後,西南氣流 明顯增強、每小時風速超過 8m/s 且持續至 5 月 底,至6月初西風略為減弱但南風依然顯著。在 南海季風爆發前,平均風速約在2至6m/s,當季 風爆發時平均風速則明顯增強至 6 至 12m/s。關 於1998年南海季風爆發前後,綜觀環境的變化, 詳細說明可參考 Lau et al.(2002)、Johnson and Ciesielski(2002) •

圖 1 為海洋觀測平台在 13°N、114°E 的密集氣象觀測資料,包括平均緯向風、 平均經向風、平均風速、海面比濕、大氣比濕、大氣溫度、SST 和每小 時累積降雨的變化。

海面比濕的變化趨勢基本上和SST變化的趨勢一致,但大氣比濕的變化有較高頻的變化現象。基本上在南海季風爆發前,大氣較為乾燥平均約為 21g/g 左右。當西南氣流盛行時,帶來較潮濕的水氣,此時大氣水氣顯著增加平均約為 22g/g。圖1中亦顯示,伴隨強烈的對流降雨系統所引發的下沖流,將高層乾冷空氣帶入低層大氣中,使得大氣溫度明顯下降至 25.5℃,大氣比濕亦下降到 19g/g 左右。大氣溫度和 SST 在南海季風爆發前,具有明顯日夜變化的現象(圖1)。大氣溫度日夜變化的振幅約在 1℃、SST 日夜變化的振幅較大氣溫度大約為 1.5℃。當太平洋高壓塑罩時,大氣溫度明顯偏高約可達到 30.2℃和 SST 接近。至 5 月中旬左右,SST 明顯升高、最高可達 31.5℃,日夜變化的振幅亦明顯增加。此時,

崔讷、只來加度仍為該備高所所有建封 50.2 Chi BST 接近。至5月中旬左右,SST 明顯升高、最高可 達 31.5℃,日夜變化的振幅亦明顯增加。此時, 大氣溫度的日夜變化較不顯著。南海季風爆發 後,西南風明顯增強時,伴隨著顯著的對流性降 水,大氣溫度和 SST 明顯降低。大氣溫度的降幅 最大可達 5℃,由最高的 30.5℃降至約 25.5℃。 SST 的降幅從季風爆發前的最高 31.5℃降至 29℃ 左右。同時,日夜變化的現象也消失。季風爆發 結束後(約在6月1日),SST 漸漸回升,日夜變 化的現象亦恢復,但爆發前和爆發後平均的 SST 相差了約 0.5℃。爆發前/後平均大氣溫度的變化 和 SST 變化的情形類似。

本文進一步將觀測資料分成季風爆發前 (1998年5月15日至5月21日)和季風爆發時 (1998年5月24日至5月30日)作進一步的討 論。1998年南海季風爆發的時間,根據 Ding and Liu(2001)的研究認為,南海北部的爆發時間是在 5月第4侯,南海季風全面的爆發時間則落在5 月第5侯。本文南海季風爆發的時間是根據海洋 觀測平台在13°N、114°E的低層密集觀測風速資 料來定義,當低層風向轉為西南風、風速大於

科來定義,當低層風向轉為四角風、風速入於 6m/s、至少持續3天且伴隨明顯的降雨現象,即 為南海季風爆發。根據本文定義,南海季風爆發 的時間在5月24至30日,和Ding and Liu(2001) 所定義的南海全面爆發的時間相當一致。

(二)海面能量收支的變化

海面淨熱通量 (H_N) 可表示為 $H_N = R_N - H_L$ - H_S ,式中 R_N 為淨輻射通量、 H_L 為潛熱通量、 H_S 爲可感熱通量。H_N >0 時,表示淨熱通量加熱海 洋; H_N <0 時,淨熱通量冷卻海洋。南海季風爆 發前,平均的 H_N 呈現明顯的日夜變化(圖 2)。 圖 2a 顯示,在白天時 $H_N > 0$,主要是由於 R_N 的 貢獻;夜間及清晨由於輻射冷卻使得 $H_N < 0$,白 天最大的 H_N 約為 900W/m²。晚上 H_N 的值約為 -150W/m²,變化較小。此時,可感熱通量的變化 不大,由圖 2 中可得,平均可感熱通量值約為 8.9W/m², 潛熱涌量的變化亦類似, 平均值在 116.9 W/m²;當季風爆發時,H_N日夜變化的現象明顯 减弱,受到雲量增加和降雨現象,使得淨輻射通 量明顯減弱,白天最大的 H_N 約為 200 至 400W/m^2 。但當降雨現象消失、天氣晴朗時 H_N 即顯著回升至 900 W/m^2 , 當出現降雨時 H_N 又顯 著下降(圖2b)。

表 1 為全部期間、季風爆發前和季風爆發時,海面氣象觀測資料和海氣渦流通量的基本統計性質。由表1可知,在季風爆發時受雲量明顯增加,平均入射太陽短波輻射値較季風爆發前減少了 174.5W/m²,淨輻射通量的差異主要來自於太陽入射短波輻射通量的減少,平均入射長波輻射的量差異不大。平均風速在季風爆發時明顯增加至 7.2m/s,是季風爆發前的兩倍,風速增加主要是受東西風分量的增加。在季風爆發前平均

 圖 2 a)為南海季風爆發前(5月15日至21日)、b)為爆發時(5月24日至30日)海面淨 能量收支圖。海面淨熱通量(H_N)可表示為H_N = R_N - H_L-H_S,其中 R_N為淨輻射通量、 H_L為潛熱通量、H_S為可感熱通量。圖中長條圖代表降雨量(mm/d),座標軸在右側。

變數	期 間	平均值	標 準 差	最小值	最大値
淨短波輻射(Wm ⁻²)	全部期間	254.6	341.1	0.0	1039.6
	第一期	282.7	359.3	0.0	1019.6
	第二期	108.2	192.6	0.0	934.1
淨長波輻射(Wm ⁻²)	全部期間	-33.4	3.4	-56.7	-27.7
	第一期	-32.1	1.7	-39.0	-28.0
	第二期	-36.1	6.5	-56.7	-28.4
淨輻射通量 (Wm ⁻²)	全部期間	221.2	342.0	-55.0	1003.5
	第一期	250.7	360.0	-35.6	988.6
	第二期	72.1	193.8	-55.0	901.6
風 速(m /s)	全部期間	4.9	1.7	0.8	12.1
	第一期	3.6	1.0	0.9	6.5
	第二期	7.2	1.6	4.0	12.1
東西風分量(m/s)	全部期間	-1.4	3.3	-6.6	11.0
	第一期	-1.4	1.4	-4.7	1.8
	第二期	5.0	1.8	1.3	11.0
南北風分量(m/s)	全部期間	2.3	2.9	-5.7	9.5
	第一期	2.9	1.1	-0.2	5.7
	第二期	4.2	2.9	-5.4	8.7
海面溫度(℃)	全部期間	30.2	0.4	29.1	31.5
	第一期	30.8	0.3	30.3	31.5
	第二期	30.0	0.2	29.6	30.5
氣 溫(℃)	全部期間	29.5	0.6	25.5	30.8
	第一期	29.9	0.3	28.8	30.8
	第二期	29.0	1.1	25.5	30.3
風應力(N m ⁻²)	全部期間	0.02	0.028	8.7e-5	0.54
	第一期	0.01	0.012	3.4e-5	0.06
	第二期	0.05	0.062	0.005	0.54
海面淨熱通量(W m ⁻²)	全部期間	140.7	341.9	-340.5	924.8
	第一期	181.7	360.8	-150.6	922.1
	第二期	-47.5	189.5	-340.5	784.5
可感熱通量(Wm ⁻²)	全部期間	3.8	5.1	-2.3	63.8
	第一期	3.2	1.5	0.6	8.9
	第二期	10.6	12.9	-0.7	63.8
潛熱通量(W m ⁻²)	全部期間	76.7	35.8	2.6	252.8
	第一期	68.0	24.1	17.6	116.9
	第二期	92.5	47.9	30.5	252.8
海氣溫差(℃)	全部期間	0.7	0.5	-0.4	4.5
	第一期	0.8	0.3	0.2	2.2
	第二期	1.2	1.1	-0.05	4.5
海氣比濕差(g/ kg)	全部期間	5.6	1.2	2.0	9.3
	第一期	6.4	1.0	4.6	8.9
	第二期	4.5	1.3	2.2	7.1

SST 約為 30.8℃,當季風爆發後 SST 明顯下降至 30.0℃,兩者相差 0.8℃左右。大氣溫度的變化和 SST 的變化類似,季風爆發前和爆發時大氣溫度 的差異亦將近 1℃。因為大氣溫度和 SST 在季風 爆發前和爆發時均下降約 1℃,使得海氣溫差的 差別不是太大。

當季風爆發時,雖然風速只增加2倍,但平 均動量通量明顯增強為季風爆發前的5倍。可感 熱通量除了明顯受風速影響外,也和低層大氣的 穩定度(海氣溫差)有關。當季風爆發時,可感 熱通量增加了約3倍,潛熱通量則增加了約1.4 倍。比較季風爆發前和爆發時海面淨能量通量差 異時可發現,在季風爆發前平均*H*_N為 181.7W/m2,有加熱海洋的效應;在季風爆發時 則變為-47.5W/m2,有冷卻海洋的作用。造成兩 者的差異,最主要的原因是,因爲雲量增加使得 太陽短波輻射通量明顯減弱有關。

(三) SST 和海洋混合層厚度(簡稱 MLD)的 比較

圖 3 為季風爆發前和爆發時觀測 SST 變化的 情形,在南海季風爆發前,SST 具有明顯的日夜 變化,其最大振幅約可達到 1℃左右。最低 SST 約出現在清晨左右,隨後受太陽短波輻射的加熱 作用,SST 即逐漸升高至傍晚時達到最高値;當 季風爆發時,SST 日夜變化的現象變得不明顯, 且 SST 變化的振幅亦減小。季風爆發前和爆發 時,平均 SST 約差了將近 0.8℃。

一般估計 MLD 的方法,多採用溫度梯度條 件或是與 SST 的差值。例如 Wyrtki (1964)、 Levitus(1982)均採用和 SST 相差 0.5℃為 MLD。 本文 MLD 的定義主要參考 Lukas and Lindstrom (1991)的方法,當海溫溫度梯度達到 0.05℃m⁻¹ 時,就定義為 MLD。季風爆發前和爆發時,觀測 的 MLD 變化分別示於圖 4a 和圖 4b 中,相對應

每小時觀測 SST 的變化,縱座標為 SST(單位:℃),橫座標為時間(單位:時)。

圖 4 圖上半部為每小時觀測的風速(實線,座標軸在右側,單位 m/s)和降雨量 (長條圖,座標軸在左側,單位 mm/d),圖下半部則為每小時海洋混合層 深度的變化。圖 a)為南海季風爆發前,圖 b)為南海季風爆發時。

的風速大小和降雨亦示於圖 4 中。在季風爆發 前,平均風速大小約為 3.6m/s,觀測海洋混合層 的厚度具有明顯日夜變化的現象(圖 4a)。當白天 海面受熱時,近表面海溫升高,形成穩定層,使 紊流強度減弱、海洋混合層不易發展,平均白天 混合層的厚度約為 6m;反之夜間表面冷卻時,近 表面海溫降低形成不穩定層,使渦流強度增強、 海洋混合層容易發展,夜間平均海洋混合層的厚 度約在 22m。圖 4b 顯示,季風爆發時,風速明顯 增強,由於紊流動能的風應力產生項(shear production term),使得紊流動能增加,有加深 MLD 的作用。同時,因為海面淨熱通量日夜變化 現象消失,使得 MLD 日夜變化的現象亦消失。 在季風爆發前,平均 MLD 約為 15.4m,季風爆發 時 MLD 明顯加深,約為 23.3m。

進一步將季風爆發前和季風爆發時 SST 和 MLD 的散佈圖,示於圖 5。由圖 5 中發現在季風 爆發前,SST 和 MLD 呈現明顯的線性關係,解 釋率亦高達 0.84。此顯著線性相關表示,在南海 季風爆發前,海面風應力較小,即海面動量的混 合作用較小時,海洋混合層的發展主要受海面浮 力項的控制。當 MLD 加深時,SST 即降低;但 當季風爆發時,SST 和 MLD 並沒有直接的關係, 大部分的點集中在 MLD 約在 24m 附近、SST 在 28℃至 29℃。

(四) 海洋溫度的比較

圖 6a 和 6b 分別是季風爆發前和季風爆發時,觀測的海溫深度-時間變化圖,圖 6a 顯示, 在季風爆發前,除了 SST 具有日夜變化的特性, 海洋混合層內的溫度亦具有日夜變化。主要是因 為,此時風應力較小且白天太陽輻射加熱使 SST 升高,在表層形成穩定的過渡斜溫層,使上層熱 量和動量不易向下傳送,限制海洋混合層的向下

圖 5 南海季風爆發前(5月15日至21日;即C1)和南海季風爆發時(5月24日 至 30日;即C2),每小時觀測SST和海洋混合層厚度的關係。

圖 6 圖上半部為每小時觀測的風速(實線,座標軸在右側,單位 m/s)和降雨 量(長條圖,座標軸在左側,單位 mm/d)。圖下半部為海溫的深度-時間 變化,圖 a)為南海季風爆發前,圖 b)為南海季風爆發時。

發展;夜間,因為海面淨熱通量變為負値(即冷 卻海洋),使 SST 降低,表層變為不穩定,加上 風應力的混合作用,上層海洋混合層較易發展。 這種日夜周期的變化,顯示洋面約有 1/4 的時間 被加熱, 3/4 的時間是被冷卻 (Price et al. 1986)。 圖 6a 亦顯示, 在 MLD 內的平均海洋溫度約為 30.4 ℃,上層海洋溫度相當暖。當季風爆發時(圖 6b), 因為風應力的混合作用和海面浮力項的作用,使 得 MLD 日夜變化消失且 MLD 加深。此時,在 MLD 內的平均海洋溫度約為 29.9℃,比季風爆發 前低了約 0.5℃。圖 6b 亦可清楚發現,當大量降 雨時(5月25日),大量的新鮮水通量注入海洋 ,在海洋表層亦形成一相對低海溫層。此低海溫 層,在海面風速減弱後(參考圖 4b)、大量降水 現象停止後約 12 小時即消失。5 月 28 日之後, 伴隨另一波降雨現象,MLD 內的溫度降幅比 5 月 25 日還低。進一步比較這兩天的 H_N顯示,兩 者差異不大,可能和海洋動力過程有關,例如水 平平流的作用。另一方面,由圖6中可發現,在 觀測的海洋混合層底,具有明顯的內重力波特性 (Peter and Gregg , 1987) •

四、結 論

在南海季風爆發前,海面氣象場和海-氣通量 的日夜變化相當清楚,大氣溫度日夜變化的振幅 約在 1°C。SST 日夜變化的振幅較大氣溫度大, 約為 1.5°C。當太平洋高壓籠罩時,大氣溫度明顯 偏高約可達到 30.2°C和 SST 接近。 H_N 呈現明顯的 日夜變化,在白天時 $H_N>0$,主要是由於 R_N 的貢 獻;夜間及清晨由於輻射冷卻使得 $H_N < 0$,白天 最大的 H_N 約為 900W/m²。晚上 H_N 的値約為 -150W/m²,變化較小。此時,可感熱通量的變化 不大,平均値約為 50W/m²,潛熱通量的變化亦 類似,平均值約在100 W/m²;南海季風爆發後, 西南風明顯增強時,伴隨著顯著的對流性降水, 大氣溫度和 SST 明顯降低。大氣溫度的降幅最大 可達 5℃,由最高的 30.5℃降至約 25.5℃。SST 的降幅從季風爆發前的最高 31.5℃降至 29℃左 右。同時,日夜變化的現象也消失。當季風爆發 時,HN日夜變化的現象明顯減弱,受到雲量增加 和降雨現象,使得淨輻射通量明顯減弱,白天最 大的 H_N 約為 200 至 400W/m²。但當降雨現象消 失、天氣晴朗時 H_N 即顯著回升至 900W/m²,當 出現降雨時 H_N 又顯著下降。受雲量明顯增加, 平均入射太陽短波輻射較季風爆發前減少。雖然 風速只增加2倍,但平均動量通量明顯增強為季 風爆發前的5倍。可感熱涌量增加了約3倍,潛 熱通量則增加了約 1.4 倍。比較季風爆發前和爆 發時海面淨能量通量差異時可發現,在季風爆發 前平均海面淨熱通量為 181.7W/m2, 有加熱海洋 的效應;在季風爆發時則變為-47.5W/m2,有冷 卻海洋的作用。

南海季風爆發前,觀測 MLD 具有明顯日夜 變化的現象。當白天海面受熱時,近表面海溫升 高,形成穩定層,使紊流強度減弱、海洋混合層 不易發展,平均白天混合層的厚度約為 6m;反之 夜間表面冷卻時,近表面海溫降低形成不穩定 層,使渦流強度增強、海洋混合層容易發展,夜 間平均海洋混合層的厚度約在 22m。在季風爆發 前,整個平均 MLD 約為 15.6m。當南海季風爆發 時,受海面風應力的混合作用和海面淨熱通量的 冷卻作用,使得 MLD 日夜變化的現象消失,平 均海洋混合層的深度亦比季風爆發前深,約為 23.3m。

未來將進一步利用吳與賈(1992)、Chen et al. (1994)和 Alexander(1992)發展的一維海洋混合層 模式,進行觀測和模擬的比較。 九十六年三月

致 謝

本研究是在國科會研究計畫編號 NSC94-2111-M-002-014-AP2的支助下完成,本文 使用的資料主要是由Tropical Atmosphere Ocean (簡稱:TAO)計畫辦公室提供。另外,兩位審 查者的寶貴意見特此致謝。

參考文獻

- 吳清吉與賈新興,1992:海洋大氣邊界層和海洋 上層混合層一維偶合模式研究,大氣科學, 20,363-386。
- 賈新興、吳清吉,2006:熱帶西太平洋海-氣通 量之研究,*大氣科學*,34,127-142。
- 賈新興、吳清吉,1998:熱帶西太平洋海-氣通 量和一維海洋混合層之模擬,大氣科學,26, 157-179。
- 盧孟明,1998:南海夏季風肇始早晚與台灣梅雨 季(五、六月)乾濕關係之探討,大氣科學, 26,205-225。
- Alexander, M. A., 1992 : Midlatitude atmosphereocean interaction during El Nino. Part I: The North Pacific Ocean, J. Climate, 5, 944-958.
- Berliand, M. E., and T. G. Berliand, 1952: Measurement of the effective radiation of the earth with varying cloud amounts (in Russian). *I_{ZV}. Akad. Nauk SSSR, Ser. Geofiz.*, 1, 64-78.
- Bradley, F., and R. Weller, 1995: Joint workshop of the TOGA COARE flux and atmospheric working groups, Boulder, Colorado, USA, 11-13 July 1995.
- Chen, D., L. M. Rothstein and A. J. Busalacchi, 1994: A hybrid vertical mixing scheme and its

application to Tropical ocean models, *J. Phys. Oceanogr.*, 24, 2156-2179.

- Chen, J. M., C. P. Chang and T. Li, 2003: Notes and correspondence: Annual Cycle of the South China Sea surface temperature using the NCEP/NCAR reanalysis. J. Meteor. Soc. Japan, 81, 879-884.
- Chern, C. S., and J. Wang, 1988: Modeling the oceanic mixed layer under a variable wind stress, *Seventh Conference on Ocean Atmosphere Interaction*, 199-202.
- Clark, N. E., L. Eber, R. M. Laurs, J. A. Renner and J. F. T. Saur, 1974: Heat exchange between ocean and atmosphere in the eastern North Pacific FOR 1961-1971. noaa Tech. Rep. NMFS SSRF-682, U.S. Department of Commerce, Washington, DC, 108 pp.
- Ding, Y. H., 1994: Monsoon over China, Kluwer Academic Publishers, Dordrecht/Boston/London, pp419.
- Ding, Y. H., and Liu. Yanju, 2001: Onset and the evoluation of the summer monsoon over the South China Sea during SCSMEX field experiment in 1998. J. Meteor. Soc. Japan, 79, 255-275.
- Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev and J. B. Edson, 2003: Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm, *J. Climate*, 16, 571-591.
- Fung, I. Y., D. E. Harrison, and A. A. Lacis, 1984: On the variability of the net longwave radiation

at the ocean surface. *Rev. Geophys, Space Phys.*, 22, 177-193.

- Godfrey, J. S., and E. J. Lindstrom, 1989: The heat budget of the western equatorial pacific surface mixed layer., *J. Geophys. Res.*, 94, 8007-8017.
- Huang, R. H. and F. Y. Sun, 1992: Impacts of the tropical western Pacific on the East Asian summer monsoon. J. Meteor. Soc. Japan, 70, 243-256.
- Johnson, R. H. and P. E. Ciesielski, 2002: Characteristics of the 1998 summer monsoon onset over the northern South China Sea. J. Meteor. Soc. Japan, 80, 561-578.
- Kang, S. D., and F. Kimura, 2003: Effect of tropical SST on Northwest Pacific subtropical anticyclone. Part I: Linear Rossby wave propagation. *J. Meteor. Soc. Japan*, 81, 1225-1242.
- Large, W. G., J. C. McWilliams, and S. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization, *Rev. Geophys.*, 32, 363-403.
- Lau K. M. and coauthors, 2000: A report of the field operations and early results of the South China Sea Monsoon Experiment (SCSMEX). *Bull. Amer. Meteor: Soc.*, 81,1261-1269
- Lau K.-M., and H. Weng, 2000: Remote forcing of US summertime droughts and floods by the Asian monsoon? GEWEX news, 10, May Issue, 5-6.
- Lau K.-M., X. Li, and H. T. Wu, 2002: Evoluation of the large scale circulation, cloud structure and regional water cycle associated with the

South China Sea monsoon. J. Meteor. Soc. Japan, 80, 1129-1147.

- Levitus, S., 1982: Climatological atlas of the world ocean, NOAA *Prof. Pap.*, 13, 173 pp. Natl. Oceanic and Atmos. Admin., Rockville, Md.
- Liu G.-R., T.-H. Kuo, Y.-C. Chen, T.-H. Lin, and C.-K. Liang, 2004: Drought forecasting with sea-atmospheric parameters retrieved from satellite observations, submit to TAO.
- Lukas, R., and E. Lindstrom, 1991: The mixed layer of the western equatorial Pacific ocean, J. *Geophys. Res.*, 96,3343-3357.
- Moum, J. N., D. R. Caldwell, and C. A. Paulson, 1989: Mixing in the equatorial surface layer and thermocline. *J. Geophys. Res.*, 94, 2005-2021.
- Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the northern hemisphere summer circulation. *J. Meteor: Soc. Japan*, 41, 373-390.
- Peters, H., and M. C. Gregg, 1987: Equatorial turbulence: Mixed layer and thermocline. *Proc. Aha Huliko'a Hawaiian Winter Workshop*, Honolulu, HI, University of Hawaii at Manoa, 25-45.
- Reed, R., 1977: On estimating insolation over the ocean. J. Phys. Oceanogr., 7, 482-485.
- Price, J. F., 1979: Observations of a rain formed mixed layer. J. Phys. Oceanogr., 9, 643-649.
- Price, J. F., R. A. Weller, and R. Pinkle, 1986: Diurnal cycling: observation and models of the upper ocean response to diurnal heating,

cooling and wind mixing. J. Geophys. Res., 91,8411-8427.

- Sui, C.-H., X. Li, M. M. Rienecker, K.-M. Lau, I. Laszlo and R. T. Pinker, 2003: The role of daily surface forcing in the upper ocean over the tropical Pacific: A numerical study. J. *Climate*, 16, 756-766.
- Wang, B., I. S. Kang and J. Y. Lee, 2004: Ensemble simulations of Asian-Australian monsoon variability by 11 AGCMs, J. Climate, 17, 803-818.
- Wyrtki. K., 1964: The thermal structure of the eastern Pacific ocean, *Dstch. Hydrogr. Zeit., Suppl. Ser.* A, 8, 6-84.

Air-Sea Eddy Fluxes and Upper Oceanic Mixing Layer over the South China Sea during SCSMEX Field Experiment in 1998

Hsin-Hsing Chia¹ Ching-Chi Wu²

¹ Weather Forecast Center, Central Weather Bureau, Taiwan ² Department of Atmospheric Sciences, National Taiwan University

(Manuscript received 13 October 2006; in final form 20 March 2007)

ABSTRACT

The Observation data of the South China Sea Monsoon Experiment (SCSMEX) of the Autonomous Temperature Line Acquisition System(ATLAS) mooring, near 13 °N \cdot 114°E, are used to study the variability both air-sea eddy fluxes and upper oceanic mixing layer. The diurnal cycle is significant before the on set of the south China sea monsoon in the air-sea eddy fluxes and upper oceanic mixing layer. Then diurnal cycle is vanished after on set. It's shown that the average sea surface net heat flux before on set is about 181.7W/m², which heating ocean. However, the sea surface net heat flux during on set is about -47.5W/m², which cooling ocean.

It is showed that the development of the oceanic mixing layer is influenced by the sea surface momentum flux. The diurnal cycle is controlled by the sea surface net heat flux. The oceanic mixing layer showed a clear diurnal cycle before on set. When the ocean is heating during daytime, the sea surface temperature increases and a stable layer is formed near surface. Therefore the turbulent mixing effect is weak that the oceanic mixing layer became shallow. The oceanic mixing layer depth is about 6 meters during the daytime. Conversely, the ocean is cooling during nighttime, the sea surface temperature decreases and an unstable layer is established near surface, so the turbulent mixing effect is increases that the oceanic mixing layer depth is about 22 meters during the nighttime. Averagely, the oceanic mixing layer depth is about 15.6m before on set. During the activity of the monsoon, the depth is about 23.3 meters, which is deeper than before on set. Due to the wind stress mixing and cooling effect of the net sea surface heat flux, the diurnal variability of the oceanic mixing layer depth vanished during the activity of the monsoon.

Key words : Oceanic mixing layer, Diurnal cycle, Sea surface net heat flux